Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:56:34.873Z Has data issue: false hasContentIssue false

Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  23 May 2008

CHAO SUN
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
YIN-HAR CHEUNG
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
KE-QING XIA
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China

Abstract

We report high-resolution measurements of the properties of the velocity boundary layer in turbulent thermal convection using the particle image velocimetry (PIV) technique and measurements of the temperature profiles and the thermal boundary layer. Both velocity and temperature measurements were made near the lower conducting plate of a rectangular convection cell using water as the convecting fluid, with the Rayleigh number Ra varying from 109 to 1010 and the Prandtl number Pr fixed at 4.3. From the measured profiles of the horizontal velocity we obtain the viscous boundary layer thickness δυ. It is found that δυ follows the classical Blasius-like laminar boundary layer in the present range of Ra, and it scales with the Reynolds number Re as δυ/H = 0.64Re−0.50±0.03 (where H is the cell height). While the measured viscous shear stress and Reynolds shear stress show that the boundary layer is laminar for Ra < 2.0 × 1010, two independent extrapolations, one based on velocity measurements and the other on velocity and temperature measurements, both indicate that the boundary layer will become turbulent at Ra ~ 1013. Just above the thermal boundary layer but within the mixing zone, the measured temperature r.m.s. profiles σT(z) are found to follow either a power law or a logarithmic behaviour. The power-law fitting may be slightly favoured and its exponent is found to depend on Ra and varies from −0.6 to −0.77, which is much larger than the classical value of −1/3. In the same region, the measured profiles of the r.m.s. vertical velocity σw(z) exhibit a much smaller scaling range and are also consistent with either a power-law or a logarithmic behaviour. The Reynolds number dependence of several wall quantities is also measured directly. These are the wall shear stress τw ~ Re1.55, the viscous sublayer δw ~ Re−0.91, the friction velocity uτ ~ Re0.80, and the skin-friction coefficient cf ~ Re−0.34. All of these scaling properties are very close to those predicted for a classical Blasius-type laminar boundary layer, except that of cf. Similar to classical shear flows, a viscous sublayer is also found to exist in the present system despite the presence of a nested thermal boundary layer. However, velocity profiles normalized by wall units exhibit no obvious logarithmic region, which is likely to be a result of the very limited distance between the edge of the viscous sublayer and the position of the maximum velocity. Compared to traditional shear flows, the peak position of the wall-unit-normalized r.m.s. profiles is found to be closer to the plate (at z+ = zw ≃ 5). Our overall conclusion is that a Blasius-type laminar boundary condition is a good approximation for the velocity boundary layer in turbulent thermal convection for the present range of Rayleigh number and Prandtl number.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Adrian, R. J. 1996 Variation of temperature and velocity fluctuations in turbulent thermal convection over horizontal surfaces. Intl. J. Heat Mass Transfer 39, 23032310.CrossRefGoogle Scholar
Ahlers, G. & Xu, X. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.CrossRefGoogle ScholarPubMed
Amati, G., Koal, K., Massaioli, F., Sreenivasan, K. R. & Verzicco, R. 2005 Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number. Phys. Fluids 17, 121701.CrossRefGoogle Scholar
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas-liquid critical point. Phys. Rev. Lett. 83, 36413644.CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 40674070.CrossRefGoogle ScholarPubMed
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50, 269279.Google ScholarPubMed
Breuer, M., Wessling, S., Schmalzl, J. & Hansen, U. 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69, 026302.Google ScholarPubMed
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Statist. Mech. P10005.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Burr, U., Kinzelbach, W. & Tsinober, A. 2003 Is the turbulent wind in convective flows driven by fluctuations? Phys. Fluids 15, 23132320.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard turbulent convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Ching, E. S. C. 1997 Heat flux and shear rate in turbulent convection. Phys. Rev. E 55, 11891192.Google Scholar
Ching, E. S. C. & Tam, W. S. 2006 Aspect-ratio dependence of heat transport by turbulent Rayleigh–Bénard convection. J. Turbulence 7 (72), 110.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81, 987990.CrossRefGoogle Scholar
Dubrulle, B. 2001 Logarithmic corrections to scaling in turbulent thermal convection. Eur. Phys. J. B 21, 295304.Google Scholar
Eggels, J. G. M., Unger, F, Weiss, M. H., Westerweel, J., Adrian, R. J., Friendrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
Eidelman, A., Elperin, T., Kleeorin, N., Markovich, A. & Rogachevskii, I. 2006 Hysteresis phenomenon in turbulent convection. Exps. Fluids 40, 723732.CrossRefGoogle Scholar
Fernandes, R. L. J. & Adrian, R. J. 2002 Scaling of velocity and temperature fluctuations in turbulent thermal convection. Expl Thermal Fluid Sci. 26, 355360.CrossRefGoogle Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.CrossRefGoogle Scholar
Glazier, J. A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: A unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2003 On geometry effects in Rayleigh–Bénard convection. J. Fluid Mech. 486, 105114.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: The role of plumes. Phys. Fluids 16, 44624472.CrossRefGoogle Scholar
Haramina, T. & Tilgner, A. 2004 Coherent structures in boundary layers of Rayleigh–Bénard convection. Phys. Rev. E 69, 056306.Google ScholarPubMed
Kadanoff, L. P. 2001 Turbulent heat flow: Structures and scaling. Phys. Today 54, 3439.CrossRefGoogle Scholar
Kenjereš, S. & Hanjalić, K. 2002 Numerical insight into flow structure in ultraturbulent thermal convection. Phys. Rev. E 66, 036307.Google ScholarPubMed
Kerr, R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.CrossRefGoogle Scholar
Kerr, R. M. & Herring, J. R. 2000 Prandtl number dependence of Nusselt number in direct numerical simulations. J. Fluid Mech. 419, 325344.CrossRefGoogle Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl. Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Lam, S., Shang, X.-D., Zhou, S.-Q. & Xia, K.-Q. 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh–Bénard convection. Phys. Rev. E 65, 066306.Google ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lui, S.-L. & Xia, K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 57, 54945503.Google Scholar
Naert, A., Segawa, T. & Sano, M. 1997 High-Reynolds-number thermal turbulence in mercury. Phys. Rev. E 56, R13021305.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnely, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2006 Turbulent convection at high Rayleigh numbers and aspect ratio 4. J. Fluid Mech. 557, 411422.CrossRefGoogle Scholar
Nikolaenko, A., Brown, E., Funfschilling, D. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less. J. Fluid Mech. 523, 251260.CrossRefGoogle Scholar
Priestley, C. H. B. 1959 Turbulent Transfer in the Lower Atmosphere. University of Chicago Press.Google Scholar
Puits, R. Du, Resagk, C., Tilgner, A., Busse, F. H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.CrossRefGoogle Scholar
Qiu, X.-L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.Google ScholarPubMed
Qiu, X.-L. & Xia, K.-Q. 1998 a Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486491.Google Scholar
Qiu, X.-L. & Xia, K.-Q. 1998 b Spatial structure of the viscous boundary layer in turbulent convection. Phys. Rev. E 58, 58165820.Google Scholar
Schlichting, H. & Gersten, K. 2000 Bounday Layer Theory. Springer.CrossRefGoogle Scholar
Shang, X.-D. 2002 Statistics, scaling and structures in fluid turbulence: Case studies for thermal convection and pipe flow. PhD thesis. The Chinese University of Hong Kong.Google Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90, 074501.CrossRefGoogle ScholarPubMed
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
Siggia, E.D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Sun, C., Ren, L.-Y., Song, H. & Xia, K.-Q. 2005 a Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio J. Fluid Mech. 542, 165174.CrossRefGoogle Scholar
Sun, C., Xi, H.-D. & Xia, K.-Q. 2005 b Azimuthal symmetry, flow dynamics, and heat flux in turbulent thermal convection in a cylinder with aspect ratio one-half. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection Phys. Rev. E 72, 067302.Google ScholarPubMed
Sun, C., Xia, K.-Q. & Tong, P. 2005 c Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell Phys. Rev. E 72, 026302.Google Scholar
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.CrossRefGoogle ScholarPubMed
Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76, 14651468.CrossRefGoogle ScholarPubMed
Thomas, D. B. & Townsend, A. A. 1957 Turbulent convection over a heated horizontal surface. J. Fluid Mech. 2, 473492.CrossRefGoogle Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47, R2253R2256.Google ScholarPubMed
Townsend, A. A. 1959 Temperature fluctuations over an heated surface. J. Fluid Mech. 5, 209241.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Wang, J. & Xia, K.-Q. 2003 Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection. Eur. Phys. J. B 32, 127136.CrossRefGoogle Scholar
Xi, H.-D., Zhou, Q. & Xia, K.-Q 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73, 056312.Google ScholarPubMed
Xia, K.-Q. 2007 Two clocks for a single engine in turbulent convection. J. Statist. Mech. N11001.CrossRefGoogle Scholar
Xia, K.-Q., Lam, S. & Zhou, S.-Q. 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection Phys. Rev. Lett. 88, 064501.CrossRefGoogle ScholarPubMed
Xia, K.-Q. & Qiu, X.-L. 1999 Turbulent convection with “disconnected” top and bottom boundary layers. Europhy. Lett. 46, 171176.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.Google ScholarPubMed
Xia, K.-Q., Xin, Y.-B. & Tong, P. 1995 Dual-beam incoherent cross-correlation spectroscopy. J. Opt. Soc. Am. A 12, 15711578.CrossRefGoogle Scholar
Xia, K.-Q. & Zhou, S.-Q. 2000 Temperature power spectra and the viscous boundary layer in thermal turbulence: the role of Prandtl number. Physica A 288, 308314 (2000).CrossRefGoogle Scholar
Xin, Y.-B. & Xia, K.-Q. 1997 Boundary layer length scales in convective turbulence. Phys. Rev. E 56, 30103015.Google Scholar
Xin, Y.-B., Xia, K.-Q. & Tong, P. 1996 Measured velocity boundary layers in turbulent convection. Phys. Rev. Lett. 77, 12661269.CrossRefGoogle ScholarPubMed
Yaws, C. L. 1999 Chemical Properties Handbook. McGraw-Hill.Google Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2007 a Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 074501.CrossRefGoogle ScholarPubMed
Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2007 b Measured oscillations of the velocity and temperature fields in turbulent Rayleigh–Bénard convection in a rectangular cell. Phys. Rev. E 76, 036301.CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.CrossRefGoogle Scholar
Zhou, S.-Q. & Xia, K.-Q. 2001 Spatially correlated temperature fluctuations in turbulent convection. Phys. Rev. E 63, 046308.Google ScholarPubMed
Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: Mixing of an active scalar. Phys. Rev. Lett. 89, 184502.CrossRefGoogle ScholarPubMed
Zocchi, G., Moses, E. & Libchaber, A. 1990 Coherent structures in turbulent convection, an experimental study. Physica A 166, 387407.CrossRefGoogle Scholar