Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:04:18.225Z Has data issue: false hasContentIssue false

Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array

Published online by Cambridge University Press:  24 November 2021

M.X. Tang
Affiliation:
Science and Technology on Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, PR China
Y. Wu*
Affiliation:
Science and Technology on Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, PR China Institute of Aero-engine, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
H.H. Zong
Affiliation:
Institute of Aero-engine, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
Y.H. Luo
Affiliation:
Science and Technology on Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, PR China
H.S. Yang
Affiliation:
Science and Technology on Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, PR China
S.G. Guo
Affiliation:
Science and Technology on Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, PR China
*
Email addresses for correspondence: [email protected]; [email protected]

Abstract

In this paper, a pulsed spark discharge plasma actuator array is deployed to control laminar–turbulent transition in a Mach 3.0 flat-plate boundary layer, and the subtle flow structures are visualized by nanoparticle planar laser scattering (NPLS) technique. Results show that the onset location of turbulence can be brought upstream by plasma actuation, corresponding to forced boundary-layer transition. Hairpin vortex packets evolved from the thermal bulbs play a vital role in the breakdown of laminar flow. With the help of a machine learning tool, all the relevant structures induced by plasma actuation are extracted from NPLS images, and a conceptual model of the hairpin vortex generation is proposed, including three stages: production and lift-up of the high-vorticity region, formation of the $\varLambda$ vortex and evolution of the hairpin vortex.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Babinsky, H. & Ogawa, H. 2008 Sbli control for wings and inlets. Shock Waves 18, 8996.CrossRefGoogle Scholar
Belinger, A., Naude, N., Cambronne, J.P. & Caruana, D. 2014 Plasma synthetic jet actuator: electrical and optical analysis of the discharge. J. Phys. D: Appl. Phys. 47, 345202.CrossRefGoogle Scholar
Berry, S., Daryabeigi, K., Wurster, K. & Bittner, R. 2010 Boundary-layer transition on x-43a. J. Spacecr. Rockets 47 (6), 922934.CrossRefGoogle Scholar
Cattafesta, L.N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Chernyshev, S.L., Kiselev, A.P. & Kuryachii, A.P. 2011 Laminar flow control research at tsagi past and present. Prog. Aerosp. Sci. 47, 169185.CrossRefGoogle Scholar
Corke, T., Arndt, A., Matlis, E. & Semper, M. 2018 Control of stationary cross-flow modes in a mach 6 boundary layer using patterned roughness. J. Fluid Mech. 856, 822849.CrossRefGoogle Scholar
Deshpande, A.S. & Poggie, J. 2018 Flow control of swept shock-wave/boundary-layer interaction using plasma actuators. J. Spacecr. Rockets 55 (5), 110.CrossRefGoogle Scholar
Dorr, P.C. & Kloker, M.J. 2016 Transition control in a three-dimensional boundary layer by direct attenuation of nonlinear crossflow vortices using plasma actuators. Intl J. Heat Fluid Flow 61, 449465.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Hanifi, A., Schmid, P.J. & Henningson, D.S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8, 826.CrossRefGoogle Scholar
He, L., Yi, S.H., Zhao, Y.X., Tian, L.F. & Chen, Z. 2011 Experimental study of a supersonic turbulent boundary layer using piv. Sci. China Phys. Mech. 54 (9), 17021709.CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of bounday layers. Annu. Rev. Fluid Mech. 20 (1), 487562.CrossRefGoogle Scholar
Kinefuchi, K., Starikovskiy, A.Y. & Miles, R.B. 2017 Control of shock-wave/boundary-layer interaction using nanosecond-pulsed plasma actuators. J. Propul. Power 34 (4), 111.Google Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Li, C., Zhang, Y.C. & Lee, C.B. 2020 Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer the effect of first mode. Phys. Fluids 32, 051701.Google Scholar
Lysenko, V.I., Gaponov, S.A., Smorodsky, B.V., Yermolaev, Y.G. & Kosinov, A.D. 2019 Influence of distributed heavy-gas injection on stability and transition of supersonic boundary-layer flow. Phys. Fluids 31, 1040103.CrossRefGoogle Scholar
Meyer, D., Rist, U. & Kloker, M. 2003 Investigation of the flow randomization process in a transitional boundary layer. In High Performance Computing in Science and Engineering’03 (ed. E. Krause, W. Jager & M. Resch), pp. 239–253. Springer.CrossRefGoogle Scholar
Panaras, A.G. & Lu, F.K. 2015 Micro-vortex generators for shock wave/boundary layer interactions. Prog. Aerosp. Sci. 74, 1647.CrossRefGoogle Scholar
Polivanova, P.A. & Sidorenko, A.A. 2018 Suppressing a laminar flow separation zone by spark discharge at mach number $m=1.43$. Tech. Phys. Lett. 44 (9), 833836.CrossRefGoogle Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide Third Edition. Springer.CrossRefGoogle Scholar
Schuele, C.Y., Corke, T.C. & Matlis, E. 2013 Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech. 718, 538.CrossRefGoogle Scholar
Sharma, S., Shadloo, M.S., Hadjadj, A. & Kloker, M.J. 2019 Control of oblique-type breakdown in a supersonic boundary layer employing streaks. J. Fluid Mech. 873, 10721089.CrossRefGoogle Scholar
Sommer, C., Straehle, C., Koethe, U. & Hamprecht, F.A. 2011 Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 230–233.Google Scholar
Starikovskiy, A.Y. & Aleksandrov, N.L. 2021 Gas dynamic flow control by ultrafast local heating in a strongly nonequilibrium pulsed plasma. Plasma Phys. Rep. 47 (2), 148209.CrossRefGoogle Scholar
Sun, D., Qu, F., Liu, C.Y., Yao, F.Z. & Bai, J.Q. 2020 Numerical study of the suction flow control of the supersonic boundary layer transition in a framework of gas-kinetic scheme. Aerosp. Sci. Technol. 109, 106397.CrossRefGoogle Scholar
Tang, M.X., Wu, Y., Guo, S.G., Liang, H. & Luo, Y.H. 2020 a Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array. Phys. Fluids 32, 121704.CrossRefGoogle Scholar
Tang, M.X., Wu, Y., Guo, S.G., Sun, Z.Z. & Luo, Z.B. 2020 b Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control. Phys. Fluids 32, 076104.CrossRefGoogle Scholar
Thomas, F.O., Corke, T.C., Duong, A., Midya, S. & Yates, K. 2019 Turbulent drag reduction using pulsed-dc plasma actuation. J. Phys. D: Appl. Phys. 52, 434001.CrossRefGoogle Scholar
Verma, S.B. & Chidambaranathan, M. 2015 Transition control of mach to regular reflection induced interaction using an array of micro ramp vane-type vortex generators. Phys. Fluids 27, 107102.CrossRefGoogle Scholar
Verma, S.B. & Chidambaranathan, M. 2017 Assessment of various low-profile mechanical vortex generators in controlling a shock-induced separation. AIAA J. 55 (7), 22282240.CrossRefGoogle Scholar
Wang, Y.T., Li, Y.W., Liu, J.X. & Li, Y.H. 2020 On the receptivity of surface plasma actuation in high-speed boundary layers. Phys. Fluids 32, 094102.CrossRefGoogle Scholar
Webb, N., Clifford, C. & Samimy, M. 2013 Control of oblique shock wave boundary layer interactions using plasma actuators. Exp. Fluids 54, 1545.CrossRefGoogle Scholar
Yadala, S., Hehner, M.T., Serpieri, J., Benard, N., Dorr, P.C., Kloker, M.J. & Kotsonis, M. 2018 Experimental control of sweptwing transition through baseflow modification by plasma actuators. J. Fluid Mech. 844, R2.CrossRefGoogle Scholar
Yatskikh, A., Ermolaev, Y.G., Kosinov, A.D. & Semionov, N.V. 2015 Evolution of wave packets in supersonic flat-plate boundary layer. Thermophys. Aeromech. 22 (1), 1727.CrossRefGoogle Scholar
Zhang, Y.C., Li, C. & Lee, C.B. 2020 Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer the effect of second mode. Phys. Fluids 32, 071702.CrossRefGoogle Scholar
Zhao, Y., Yi, S., Tian, L. & Cheng, Z. 2009 Supersonic flow imaging via nanoparticles. Sci. China E 52 (12), 36403648.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhuang, Y., Tan, H.J., Huang, H.X., Liu, Y.Z. & Zhang, Y. 2018 a Fractal features of turbulent non-turbulent interface in supersonic turbulent boundary layers. J. Fluid Mech. 843, R2.CrossRefGoogle Scholar
Zhuang, Y., Tan, H.J., Li, X., Guo, Y.J. & Sheng, F.J. 2018 b Evolution of coherent vortical structures in a shock waveturbulent boundarylayer interaction flow. Phys. Fluids 30, 111702.Google Scholar
Zhuang, Y., Tan, H.J., Wang, W.X., Li, X. & Guo, Y.J. 2019 Fractal features of turbulent non-turbulent interface in a shock waveturbulent boundary-layer interaction flow. J. Fluid Mech. 869, R6.CrossRefGoogle Scholar