Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T02:19:55.625Z Has data issue: false hasContentIssue false

Experimental evidence of a phase transition in the multifractal spectra of turbulent temperature fluctuations at a forest canopy top

Published online by Cambridge University Press:  01 June 2020

S. Dupont*
Affiliation:
INRAE, Bordeaux Sciences Agro, ISPA, F-33140Villenave d’Ornon, France
F. Argoul
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine, CNRS UMR5798, Université de Bordeaux, 33405Talence, France
E. Gerasimova-Chechkina
Affiliation:
Laboratory of Physical Foundation of Strength, Institute of Continuous Media Mechanics UB RAS, Perm, Russia
M. R. Irvine
Affiliation:
INRAE, Bordeaux Sciences Agro, ISPA, F-33140Villenave d’Ornon, France
A. Arneodo
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine, CNRS UMR5798, Université de Bordeaux, 33405Talence, France
*
Email address for correspondence: [email protected]

Abstract

Ramp–cliff patterns visible in scalar turbulent time series have long been suspected to enhance the fine-scale intermittency of scalar fluctuations compared to longitudinal velocity fluctuations. Here, we use the wavelet transform modulus maxima method to perform a multifractal analysis of air temperature time series collected at a pine forest canopy top for different atmospheric stability regimes. We show that the multifractal spectra exhibit a phase transition as the signature of the presence of strong singularities corresponding to sharp temperature drops (respectively jumps) bordering the so-called ramp (respectively inverted ramp) cliff patterns commonly observed in unstable (respectively stable) atmospheric conditions and previously suspected to contaminate and possibly enhance the internal intermittency of (scalar) temperature fluctuations. Under unstable (respectively stable) atmospheric conditions, these ‘cliff’ singularities are indeed found to be hierarchically distributed on a ‘Cantor-like’ set surrounded by singularities of weaker strength typical of intermittent temperature fluctuations observed in homogeneous and isotropic turbulence. Under near-neutral conditions, no such a phase transition is observed in the temperature multifractal spectra, which is a strong indication that the statistical contribution of the ‘cliffs’ is not important enough to account for the stronger intermittency of temperature fluctuations when compared to corresponding longitudinal velocity fluctuations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abry, P., Roux, S. & Jaffard, S. 2011 Detecting oscillating singularities in multifractal analysis: application to hydrodynamic turbulence. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 43284331. Prague Congress Ctr, Prague, CZECH REPUBLIC.Google Scholar
Anselmet, F., Gagne, Y., Hopfinger, E. J. & Antonia, R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.CrossRefGoogle Scholar
Antonia, R. A., Hopfinger, E. J., Gagne, Y. & Anselmet, F. 1984 Temperature structure functions in turbulent shear flows. Phys. Rev. A 30 (5), 27042707.CrossRefGoogle Scholar
Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J. & Frisch, U. 1989 Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade. Nature 338, 5153.CrossRefGoogle Scholar
Arneodo, A., Audit, B., Decoster, N., Muzy, J. F. & Vaillant, C. 2002 A wavelet based multifractal formalism: application to DNA sequences, satellite images of the cloud structure and stock market data. In The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes, pp. 26102. Springer.CrossRefGoogle Scholar
Arneodo, A., Audit, B., Kestener, P. & Roux, S. G. 2008 Wavelet-based multifractal analysis. Scholarpedia 3, 4103.CrossRefGoogle Scholar
Arneodo, A., Bacry, E. & Muzy, J. F. 1995 The thermodynamics of fractals revisited with wavelets. Physica A 213, 232275.CrossRefGoogle Scholar
Arneodo, A., Decoster, N., Kestener, P. & Roux, S. G. 2003 A wavelet-based method for multifractal image analysis: from theoretical concepts to experimental applications. Adv. Imaging Electr. Phys. 126, 192.CrossRefGoogle Scholar
Arneodo, A., Manneville, S. & Muzy, J. F. 1998c Towards log-normal statistics in high Reynolds number turbulence. Eur. Phys. J. B 1, 129140.CrossRefGoogle Scholar
Arneodo, A., Muzy, J. F. & Sornette, D. 1998d ‘Direct’ causal cascade in the stock market. Eur. Phys. J. B 2, 277282.CrossRefGoogle Scholar
Arneodo, A., Vaillant, C., Audit, B., Argoul, F., d’Aubenton Carafa, Y. & Thermes, C. 2011 Multi-scale coding of genomic information: from dna sequence to genome structure and function. Phys. Rep. 498, 45188.CrossRefGoogle Scholar
Attuel, G., Gerasimova-Chechkina, E., Argoul, F., Yahia, H. & Arneodo, A. 2018 Multifractal desynchronization of the cardiac excitable cell network during atrial fibrillation. I. Multifractal analysis of clinic data. Front. Physiol. 8, 1139.CrossRefGoogle Scholar
Audit, B., Bacry, E., Muzy, J. F. & Arneodo, A. 2002 Wavelet-based estimators of scaling behavior. IEEE Trans. Inf. Theory 48, 29382954.CrossRefGoogle Scholar
Balkovsky, E. & Lebedev, V. 1998 Instanton for the Kraichnan passive scalar problem. Phys. Rev. E 58 (5, A), 57765795.Google Scholar
Barkley, D. & Cumming, A. 1990 Thermodynamics of the quasiperiodic parameter set at the borderline of chaos: experimental results. Phys. Rev. Lett. 64 (4), 327331.CrossRefGoogle ScholarPubMed
Basu, S., Foufoula-Georgiou, E., Lashermes, B. & Arnéodo, A. 2007 Estimating intermittency exponent in neutrally stratified atmospheric surface layer flows: a robust framework based on magnitude cumulant and surrogate analyses. Phys. Fluids 19, 115102.CrossRefGoogle Scholar
Belcher, S. E., Harman, I. N. & Finnigan, J. J. 2012 The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 44, 479504.CrossRefGoogle Scholar
Cava, D. & Katul, G. G. 2008 Spectral short-circuiting and wake production within the canopy trunk space of an alpine hardwood forest. Boundary-Layer Meteorol. 126, 415431.CrossRefGoogle Scholar
Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. 2000 Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett. 84 (11), 23852388.CrossRefGoogle ScholarPubMed
Celani, A., Mazzino, A. & Vergassola, M. 2001 Thermal plume turbulence. Phys. Fluids 13 (7), 21332135.CrossRefGoogle Scholar
Chertkov, M. 1997 Instanton for random advection. Phys. Rev. E 55 (3, A), 27222735.Google Scholar
Chevillard, L., Roux, S. G., Leveque, E., Mordant, N., Pinton, J. F. & Arneodo, A. 2003 Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91 (21), 214502.CrossRefGoogle ScholarPubMed
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.CrossRefGoogle Scholar
Delour, J., Muzy, J. F. & Arneodo, A. 2001 Intermittency of 1d velocity spatial profiles in turbulence: a magnitude cumulant analysis. Eur. Phys. J. B 23, 243248.CrossRefGoogle Scholar
Dupont, S., Irvine, M. R., Bonnefond, J. M., Lamaud, E. & Brunet, Y. 2012 Turbulent structures in a pine forest with a deep and sparse trunk space: stand and edge regions. Boundary-Layer Meteorol. 143, 309336.CrossRefGoogle Scholar
Dupont, S. & Patton, E. G. 2012 Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment. Atmos. Chem. Phys. 12, 59135935.CrossRefGoogle Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.CrossRefGoogle Scholar
Fitzmaurice, L., Shaw, R. H., Paw U, K. T. & Patton, E. G. 2004 Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow. Boundary-Layer Meteorol. 112, 107127.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence, p. 296. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U., Mazzino, A. & Vergassola, M. 1998 Intermittency in passive scalar advection. Phys. Rev. Lett. 80 (25), 55325535.CrossRefGoogle Scholar
Gao, W., Shaw, R. H. & Paw U, K. T. 1989 Observation of organised structures in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol. 47, 349377.CrossRefGoogle Scholar
Gerasimova, E., Audit, B., Roux, S. G., Khalil, A., Gileva, O., Argoul, F., Naimark, O. & Arneodo, A. 2014 Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front. Physiol. 5, 176.CrossRefGoogle ScholarPubMed
Harman, I. N. & Finnigan, J. J. 2008 Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorol. 129, 323351.CrossRefGoogle Scholar
Higbie, R. 1935 The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Engng 31, 365389.Google Scholar
Higgins, C. W., Parlange, M. B. & Meneveau, C. 2003 Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer. Bound. Layer Meteorol. 109 (1), 5983.CrossRefGoogle Scholar
Iyer, K. P., Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2018 Steep cliffs and saturated exponents in three-dimensional scalar turbulence. Phys. Rev. Lett. 121 (26), 264501.CrossRefGoogle ScholarPubMed
Jensen, M. H., Kadanoff, L. P. & Procaccia, I. 1987 Scaling structure and thermodynamics of strange sets. Phys. Rev. A 36 (3), 14091420.CrossRefGoogle ScholarPubMed
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows. Their Structure and Measurements, p. 289. Oxford University Press.Google Scholar
Katul, G. G. & Chang, W. H. 1999 Principal length scales in second-order closure models for canopy turbulence. J. Appl. Meteorol. 38, 16311643.2.0.CO;2>CrossRefGoogle Scholar
Katul, G. G., Angelini, C., De Canditiis, D., Amato, U., Vidakovic, B. & Alberston, J. D. 2003 Are the effects of large scale flow conditions really lost through the turbulent cascade? Geophys. Res. Lett. 30 (4), 1164.CrossRefGoogle Scholar
Katul, G. G., Cavac, D., Siqueria, M. & Poggi, D. 2013 Scalar turbulence within the canopy sublayer. In Coherent Flow Structures at Earth’s Surface, pp. 7395. John Wiley.CrossRefGoogle Scholar
Katul, G. G. & Parlange, M. B. 1994 On the active role of temperature in surface-layer turbulence. J. Atmos. Sci. 51 (15), 21812195.2.0.CO;2>CrossRefGoogle Scholar
Katul, G. G. & Parlange, M. B. 1995 The spatial structure of turbulence at production wavenumbers using orthonormal wavelets. Boundary-Layer Meteorol. 75, 81108.CrossRefGoogle Scholar
Katul, G. G., Porporato, A., Cava, D. & Siqueira, M. 2006 An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence. Physica D 215, 117126.Google Scholar
Katul, G. G., Porporato, A. & Poggi, D. 2009 Roughness effects on fine-scale anisotropy and anomalous scaling in atmospheric flows. Phys. Fluids 21, 035106.CrossRefGoogle Scholar
Katzen, D. & Procaccia, I. 1987 Phase transitions in the thermodynamic formalism of multifractals. Phys. Rev. Lett. 58 (12), 11691172.CrossRefGoogle ScholarPubMed
Khalil, A., Joncas, G., Nekka, F., Kestener, P. & Arneodo, A. 2006 Morphological analysis of hi features. II. Wavelet-based multifractal formalism. Astrophys. J. Suppl. Ser. 165, 512550.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible fluid for very large reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299303.Google Scholar
Lashermes, B., Roux, S., Abry, P. & Jaffard, S. 2008 Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders. Eur. Phys. J. B 61, 201215.CrossRefGoogle Scholar
Lin, C. C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equations. Q. Appl. Maths 10 (4), 154165.Google Scholar
Lvov, V. S., Procaccia, I. & Fairhall, A. L. 1994 Anomalous scaling in fluid-mechanics – the case of the passive scalar. Phys. Rev. E 50 (6), 46844704.Google Scholar
Mahrt, L. & Gamage, N. 1987 Observation of turbulence in stratified flow. J. Atmos. Sci. 44 (7), 11061121.2.0.CO;2>CrossRefGoogle Scholar
Mallat, S. & Hwang, W. L. 1992 Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38 (2, 2), 617643.CrossRefGoogle Scholar
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.CrossRefGoogle Scholar
Moisy, F., Willaime, H., Andersen, J. S. & Tabeling, P. 2001 Passive scalar intermittency in low temperature helium flows. Phys. Rev. Lett. 86 (21), 48274830.CrossRefGoogle ScholarPubMed
Muzy, J. F., Bacry, E. & Arneodo, A. 1991 Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67, 35153518.CrossRefGoogle ScholarPubMed
Muzy, J. F., Bacry, E. & Arneodo, A. 1993 Multifractal formalism for fractal signals – the structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E 47 (2), 875.Google ScholarPubMed
Muzy, J. F., Bacry, E. & Arneodo, A. 1994 The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos 4, 245302.CrossRefGoogle Scholar
Obukhov, A. 1949 Structure of the temperature field in a turbulent current. Tr. Inst. Teor. Geofiz. Akad. Nauk. SSSR. 13 (1), 5869.Google Scholar
Obukhov, A. M. 1946 Turbulence in an atmosphere with a non-uniform temperature. Tr. Inst. Teor. Geofiz. Akad. Nauk. SSSR. 1, 95115.Google Scholar
Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J. & Hipps, L. 1992 On coherent structures in turbulence above and within agricultural plant canopies. Agric. Forest Meteorol. 61, 5568.CrossRefGoogle Scholar
Paw U, K. T., Qiu, J., Su, H.-B., Watanabe, T. & Brunet, B. 1995 Surface renewal analysis: a new method to obtain scalar fluxes. Agric. Forest Meteorol. 74, 119137.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.CrossRefGoogle Scholar
Pope, S. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pumir, A., Shraiman, B. I. & Siggia, E. D. 1997 Perturbation theory for the delta-correlated model of passive scalar advection near the Batchelor limit. Phys. Rev. E 55 (2), R1263R1266.Google Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3–4), 351382.CrossRefGoogle Scholar
Roland, T., Khalil, A., Tanenbaum, A., Berguiga, L., Delichere, P., Bonneviot, L., Elezgaray, J., Arneodo, A. & Argoul, F. 2009 Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies. Surf. Sci. 603 (22), 33073320.CrossRefGoogle Scholar
Roux, S. G., Venugopal, V., Fienberg, K., Arneodo, A. & Foufoula-Georgiou, E. 2009 Evidence for inherent nonlinearity in temporal rainfall. Adv. Water Resour. 32, 4148.CrossRefGoogle Scholar
Schertzer, D. & Lovejoy, S. 1992 Hard and soft multifractal processes. Physica A 185, 187194.CrossRefGoogle Scholar
Schmitt, F. G. 2005 Relating lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence. Eur. Phys. J. B 48, 129137.CrossRefGoogle Scholar
Schmitt, F., Schertzer, D., Lovejoy, S. & Brunet, Y. 1996 Multifractal temperature and flux of temperature variance in fully developed turbulence. Europhys. Lett. 34 (3), 195200.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405 (6787), 639646.CrossRefGoogle ScholarPubMed
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. 434 (1890), 165182.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Taylor, R. J. 1958 Thermal structures in the lowest layers of the atmosphere. Aust. J. Phys. 11, 168176.CrossRefGoogle Scholar
Venugopal, V., Roux, S. G., Foufoula-Georgiou, E. & Arneodo, A. 2006 Revisiting multifractality of high-resolution temporal rainfall using a waveletbased formalism. Water Resour. Res. 42, W06D14.CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6.CrossRefGoogle Scholar
Xu, H., Pumir, A., Falkovich, G., Bodenschatz, E., Shats, M., Xia, H., Francois, N. & Boffetta, G. 2014 Flight-crash events in turbulence. Proc. Natl Acad. Sci. USA 111 (21), 75587563.CrossRefGoogle ScholarPubMed
Yakhot, V. 1997 Passive scalar advected by a rapidly changing random velocity field: probability density of scalar differences. Phys. Rev. E 55 (1, A), 329336.Google Scholar
Zorzetto, E., Bragg, A. D. & Katul, G. 2018 Extremes, intermittency, and time directionality of atmospheric turbulence at the crossover from production to inertial scales. Phys. Rev. Fluid 3, 094604.CrossRefGoogle Scholar