Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T02:11:56.103Z Has data issue: false hasContentIssue false

Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity

Published online by Cambridge University Press:  15 October 2010

A. SAURET*
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS/Universités Aix-Marseille, 49, rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France
D. CÉBRON
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS/Universités Aix-Marseille, 49, rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France
C. MORIZE
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS/Universités Aix-Marseille, 49, rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France Laboratoire FAST, UMR 7608, Bat. 502, Campus Universitaire, 91405 Orsay Cedex, France
M. LE BARS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS/Universités Aix-Marseille, 49, rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France
*
Email address for correspondence: [email protected]

Abstract

We study both experimentally and numerically the steady zonal flow generated by longitudinal librations of a spherical rotating container. This study follows the recent weakly nonlinear analysis of Busse (J. Fluid Mech., vol. 650, 2010, pp. 505–512), developed in the limit of small libration frequency–rotation rate ratio and large libration frequency–spin-up time product. Using particle image velocimetry measurements as well as results from axisymmetric numerical simulations, we confirm quantitatively the main features of Busse's analytical solution: the zonal flow takes the form of a retrograde solid-body rotation in the fluid interior, which does not depend on the libration frequency nor on the Ekman number, and which varies as the square of the amplitude of excitation. We also report the presence of an unpredicted prograde flow at the equator near the outer wall.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldridge, K. D. & Toomre, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37, 307323.CrossRefGoogle Scholar
Busse, F. H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739751.CrossRefGoogle Scholar
Busse, F. H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650, 505512.CrossRefGoogle Scholar
Calkins, M. A., Noir, J., Eldredge, J. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids (in press).CrossRefGoogle Scholar
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. & Woodward, C. S. 2005 Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM T. Math. Softw. 31, 363396.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. & Holin, I. V. 2007 Large amplitude libration of Mercury reveals a molten core. Science 316 (5825), 710714.CrossRefGoogle ScholarPubMed
Meunier, P. & Leweke, T. 2003 Analysis and minimization of errors due to high gradients in particle image velocimetry. Exp. Fluids 35 (5), 408421.CrossRefGoogle Scholar
Morize, C., Le Bars, M., Le Gal, P. & Tilgner, A. 2010 Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104, 214501.CrossRefGoogle ScholarPubMed
Noir, J., Calkins, M. A., Lasbleis, M., Cantwell, J. & Aurnou, J. M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182, 98106.CrossRefGoogle Scholar
Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M. & Aurnou, J. M. 2009 An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173, 141152.CrossRefGoogle Scholar
Rieutord, M. 1991 Linear theory of rotating fluids using spherical harmonics. II. Time-periodic flows. Geophys. Astrophys. Fluid Dyn. 59, 185208.CrossRefGoogle Scholar
Suess, S. T. 1971 Viscous flow in a deformable rotating container. J. Fluid Mech. 45, 189201.CrossRefGoogle Scholar
Tilgner, A. 1999 Driven inertial oscillations in spherical shells. Phys. Rev. E 59 (2), 17891794.CrossRefGoogle Scholar
Van Hoolst, T. V., Rambaux, N., Karatekin, O., Dehant, V. & Rivoldini, A. 2008 The librations, shape and icy shell of Europa. Icarus 195 (1), 386399.CrossRefGoogle Scholar