Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T13:53:22.391Z Has data issue: false hasContentIssue false

Experimental and numerical study of laser-induced secondary jetting

Published online by Cambridge University Press:  14 January 2022

R.T. Cerbus
Affiliation:
Université Bordeaux- CNRS, LOMA, UMR 5798, F33405 Talence, France
H. Chraibi
Affiliation:
Université Bordeaux- CNRS, LOMA, UMR 5798, F33405 Talence, France
M. Tondusson
Affiliation:
Université Bordeaux- CNRS, LOMA, UMR 5798, F33405 Talence, France
S. Petit
Affiliation:
Université Bordeaux- CNRS- CEA, CELIA, UMR 5107, F33405 Talence, France
D. Soto
Affiliation:
Poetis, Bioparc Bordeaux Métropole - Bat C 27 allée Charles Darwin, 33600 Pessac, France
R. Devillard
Affiliation:
Université Bordeaux, INSERM, BIOTIS, UMR1026, F-33000 Bordeaux, France
J.P. Delville
Affiliation:
Université Bordeaux- CNRS, LOMA, UMR 5798, F33405 Talence, France
H. Kellay*
Affiliation:
Université Bordeaux- CNRS, LOMA, UMR 5798, F33405 Talence, France
*
Email address for correspondence: [email protected]

Abstract

The generation of liquid jets and drops using tightly focused femtosecond laser pulses near a liquid–air interface is a convenient contactless solution for printing functional materials as well as bio-materials. Jets and drops emerge following the nucleation of a cavitation bubble in the liquid bulk by a laser-induced plasma. During the initial expansion of the bubble, a thin and fast jet is produced at the liquid surface. Moments later a second thick and slow jet emanates from the surface when the bubble has nearly deflated. Despite potential applications, little is known about the mechanism behind this complex phenomenology. Here, experiments and simulations are used to investigate this two-jet process. Counter-intuitively, the second jet is not the result of bubble expansion, as with the first jet, but originates from the secondary flows induced by the bubble dynamics. Our study links the second jet properties to the control parameters of the problem and establishes a phase diagram for its emergence.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, M., Pages, E., Ducom, A., Fontaine, A. & Guillemot, F. 2014 Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6 (4), 045001.CrossRefGoogle ScholarPubMed
Blake, J.R & Gibson, D.C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Bohandy, J., Kim, B.F. & Adrian, F.J. 1986 Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60 (4), 15381539.CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Brown, M.S., Brasz, C.F., Ventikos, Y. & Arnold, C.B. 2012 Impulsively actuated jets from thin liquid films for high-resolution printing applications. J. Fluid Mech. 709, 341370.CrossRefGoogle Scholar
Chahine, G.L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME J. Fluids Engng 99 (4), 709716.CrossRefGoogle Scholar
Chahine, G.L. & Bovis, A. 1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. In Cavitation and Inhomogeneities in Underwater Acoustics, pp. 23–29. Springer.CrossRefGoogle Scholar
Chen, R.C.C., Yu, Y.T., Su, K.-W., Chen, J.-F. & Chen, Y.-F. 2013 Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface. Opt. Express 21 (1), 445453.CrossRefGoogle ScholarPubMed
Davies, R.M. & Taylor, G.I. 1942 The vertical motion of a spherical bubble and the pressure surrounding it. The Scientific Papers of GI Taylor, pp. 320–336. Cambridge University Press.Google Scholar
Deblais, A., Harich, R., Colin, A. & Kellay, H. 2016 Taming contact line instability for pattern formation. Nat. Commun. 7, 12458.CrossRefGoogle ScholarPubMed
Desrus, H., Chassagne, B., Moizan, F., Devillard, R., Petit, S., Kling, R. & Catros, S. 2016 Effective parameters for film-free femtosecond laser assisted bioprinting. Appl. Opt. 55 (14), 38793886.CrossRefGoogle ScholarPubMed
Fabbro, R., Fournier, J., Ballard, P., Devaux, D. & Virmont, J. 1990 Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68 (2), 775784.CrossRefGoogle Scholar
Glasser, A., Cloutet, E., Hadziioannou, G., Kellay, H. , 2019 Tuning the rheology of conducting polymer inks for various deposition processes. Chem. Mater. 31 (17), 69366944.CrossRefGoogle Scholar
Gruene, M., Unger, C., Koch, L., Deiwick, A. & Chichkov, B. 2011 Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Engng Online 10 (1), 19.CrossRefGoogle ScholarPubMed
Jalaal, M., Li, S., Klein Schaarsberg, M., Qin, Y. & Lohse, D. 2019 a Destructive mechanisms in laser induced forward transfer. Appl. Phys. Lett. 114 (21), 213703.CrossRefGoogle Scholar
Jalaal, M., Schaarsberg, M.K., Visser, C.-W. & Lohse, D. 2019 b Laser-induced forward transfer of viscoplastic fluids. J. Fluid Mech. 880, 497513.CrossRefGoogle Scholar
Jasak, H., Jemcov, A. & Tukovic, Z. 2007 OpenFOAM: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik Croatia.Google Scholar
Kiyama, A., Tagawa, Y., Ando, K. & Kameda, M. 2016 Effects of a water hammer and cavitation on jet formation in a test tube. J. Fluid Mech. 787, 224236.CrossRefGoogle Scholar
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.CrossRefGoogle Scholar
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016 Simulation of bubble expansion and collapse in the vicinity of a free surface. Phys. Fluids 28 (5), 052103.CrossRefGoogle Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep Prog. Phys. 73 (10), 106501.CrossRefGoogle Scholar
Li, T., Zhang, A.-M., Wang, S.-P., Li, S. & Liu, W.-T. 2019 Bubble interactions and bursting behaviors near a free surface. Phys. Fluids 31 (4), 042104.Google Scholar
Linz, N., Freidank, S., Liang, X.-X. & Vogel, A. 2016 Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery. Phys. Rev. B 94 (2), 024113.CrossRefGoogle Scholar
Liu, N.N., Cui, P., Ren, S.F. & Zhang, A.M. 2017 Study on the interactions between two identical oscillation bubbles and a free surface in a tank. Phys. Fluids 29 (5), 052104.CrossRefGoogle Scholar
Mézel, C., Souquet, A., Hallo, L. & Guillemot, F. 2010 Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication 2 (1), 014103.CrossRefGoogle ScholarPubMed
Miller, S.T., Jasak, H., Boger, D.A., Paterson, E.G. & Nedungadi, A. 2013 A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132143.CrossRefGoogle Scholar
Patrascioiu, A., Fernández-Pradas, J.M., Morenza, J.L. & Serra, P. 2014 a Film-free laser printing: jetting dynamics analyzed through time-resolved imaging. Appl. Surf. Sci. 302, 303308.CrossRefGoogle Scholar
Patrascioiu, A., Fernández-Pradas, J.M., Palla-Papavlu, A., Morenza, J.L. & Serra, P. 2014 b Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluid Nanofluid 16 (1-2), 5563.CrossRefGoogle Scholar
Pearson, A., Cox, E., Blake, J.R. & Otto, S.R. 2004 Bubble interactions near a free surface. Engng Anal. Bound. Elem. 28 (4), 295313.CrossRefGoogle Scholar
Petit, S., Kérourédan, O., Devillard, R. & Cormier, E. 2017 Femtosecond versus picosecond laser pulses for film-free laser bioprinting. Appl. Opt. 56 (31), 86488655.CrossRefGoogle ScholarPubMed
Robinson, P.B., Blake, J.R., Kodama, T., Shima, A. & Tomita, Y. 2001 Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89 (12), 82258237.CrossRefGoogle Scholar
Rusche, H. 2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).Google Scholar
Saade, Y., Jalaal, M., Prosperetti, A. & Lohse, D. 2021 Crown formation from a cavitating bubble close to a free surface. J. Fluid Mech. 926, A5.CrossRefGoogle Scholar
Sanjay, V., Lohse, D. & Jalaal, M. 2021 Bursting bubble in a viscoplastic medium. J. Fluid Mech. 922, A2.CrossRefGoogle Scholar
Schaffer, C.B., Nishimura, N., Glezer, E.N., Kim, A.M.-T. & Mazur, E. 2002 Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10 (3), 196203.CrossRefGoogle ScholarPubMed
Tagawa, Y., Oudalov, N., Visser, C.W., Peters, I.R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2 (3), 031002.Google Scholar
Turkoz, E., Deike, L. & Arnold, C.B. 2017 Comparison of jets from newtonian and non-newtonian fluids induced by blister-actuated laser-induced forward transfer (BA-LIFT). Appl. Phys. A 123 (10), 652.CrossRefGoogle Scholar
Turkoz, E., Perazzo, A., Kim, H., Stone, H.A. & Arnold, C.B. 2018 Impulsively induced jets from viscoelastic films for high-resolution printing. Phys. Rev. Lett. 120 (7), 074501.CrossRefGoogle ScholarPubMed
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D.X., Noojin, G.D., Rockwell, B.A. & Birngruber, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68 (2), 271–280.CrossRefGoogle Scholar
Yan, J., Huang, Y., Xu, C. & Chrisey, D.B. 2012 Effects of fluid properties and laser fluence on jet formation during laser direct writing of glycerol solution. J. Appl. Phys. 112 (8), 083105.CrossRefGoogle Scholar
Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q. & Shi, Y. 2018 A review of 3D printing technology for medical applications. Engineering 4 (5), 729742.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S.R. & Ohl, C.-D. 2020 Splitting and jetting of cavitation bubbles in thin gaps. J. Fluid Mech. 896, A28.CrossRefGoogle Scholar
Zhang, Z., Xiong, R., Corr, D.T. & Huang, Y. 2016 Study of impingement types and printing quality during laser printing of viscoelastic alginate solutions. Langmuir 32 (12), 30043014.CrossRefGoogle ScholarPubMed
Zhang, Z., Xiong, R., Mei, R., Huang, Y. & Chrisey, D.B. 2015 Time-resolved imaging study of jetting dynamics during laser printing of viscoelastic alginate solutions. Langmuir 31 (23), 64476456.CrossRefGoogle ScholarPubMed
Zhou, L.-Y., Fu, J. & He, Y. 2020 A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater. 30, 2000187.CrossRefGoogle Scholar