Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:50:50.366Z Has data issue: false hasContentIssue false

Experimental analysis of the pressure field induced on a square cylinder by a turbulent flow

Published online by Cambridge University Press:  21 April 2006

J. P. Huot
Affiliation:
Laboratoire de Mécanique des Fluides, associé au C.N.R.S., Ecole Centrale de Lyon, 69130 ECULLY, France
C. Rey
Affiliation:
Laboratoire de Mécanique des Fluides, associé au C.N.R.S., Ecole Centrale de Lyon, 69130 ECULLY, France Present address: Ecole Nationale Supérieure de Mécanique – 44072 NANTES.
H. Arbey
Affiliation:
Laboratoire de Mécanique des Fluides, associé au C.N.R.S., Ecole Centrale de Lyon, 69130 ECULLY, France Present address: Institut National de Recherche et de Sécurité – 54501 VANDOEUVRE.

Abstract

This paper is devoted to the study of the mean and fluctuating pressure field that develop on the surface of a square cylinder (side D) placed in homogeneous flows with different intensities ($u^{\prime}/\overline{U}_{\infty}$) and ratios of turbulence scales to cylinder scale L11/D. In these experiments $u^{\prime}/\overline{U}_{\infty}$ varies from 3 to 17.5% and L11/D varies from 0.1 to 2. This range of experimental conditions is more extensive than that of Lee (1975). Lee's results are largely confirmed, in particular the influence of varying turbulence intensity on the mean pressure distribution in the recirculation region is much stronger than that of varying the integral scale. The theory proposed by Durbin & Hunt (1980) for the prediction of the pressure spectrum at the stagnation point has been shown to be adequate for low frequencies but only qualitative at high frequencies. Finally, measurements of cross-spectra, taken for different points on the same cross-section, have shown how the fluctuating surface pressure field downwind of separation has a narrowband component at the Strouhal frequency that is sensitive to the turbulence, and a broadband component generated by the recirculating flow that is insensitive to the upwind turbulence.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barriga, A. R., Crowe, C. T. & Robertson, J. A. 1975 In Proc. 4th Ml Conf. on Wind Effects on Building and Structures (ed. K. J. Eaton), p. 89. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1954 Q. J. Mech. Appl. Maths 2, 83.Google Scholar
Bearman, P. W. 1972 J. Fluid Mech. 53, 451.
Bearman, P. W. & Fackrell, J. E. 1975 J. Fluid Mech. 72, 229.
Charnay, G., Mathieu, J. & Comte-Bellot, G. 1976 Phys. Fluids 19, 1261.
Cherry, N. J., Hillier, R. & Latour, M. E. 1984 J. Fluid Mech. 114, 1346.
Comte-Bellot, G., Corrsin, S. 1971 J. Fluid Mech. 48, 273.
Courchesne, J. & Laneville, A. 1982 Trans. A8ME I: J. Fluids Engng 104, 523528.
Ditrbin, P. A. & Hunt, J. C. R. 1980 J. Fluid Mech. 100, 161.
Hillier, R. & Cherry, N. J. 1981 J. Wind Engng and Ind. Aero. 8, 49.
Hunt, J. C. R. 1973 J. Fluid Mech. 61, 627.
Hunt, J. C. R. 1975 Proc. 4th Intl Conf. on Wind Effects on Building and Structures (ed. K. J. Eaton), p. 309. Cambridge University Press.
Huot, J. P. 1980 Thése de Docteur-Ingénieur, Lyon.
Huot, J. P., Arbey, H. & Rey, C. 1983 C. R. Acad. Sci. Paris 296, 305.
Huot, J. P., Rey, C. & Arbey, H. 1984 Phys. Fluids 27, 541.
Kao, T. W. 1970 Thesis, University of Western Ontario.
Kawai, H., Katsura, J. & Ishizaki, H. 1980 Wind Engineering. Pergamon.
Kwok, K. C. S. 1983 Trans. ASMEl: J. Fluids Engng 105, 140.
Laneville, A., Gartshore, J. S. & Parkinson, G. V. 1975 Proc. 4th Intl Conf. on Wind Effects on Buildings and Structures (ed. K. J. Eaton), p. 333. Cambridge University Press.
Lee, B. E. 1975 J. Fluid Mech. 69, 263.
Petty, D. G. 1979 J. Ind. Aerodyn. 4, 247.
Ranga Raju, K. G., Vijaya Singh 1975 J. Ind. Aerodyn. 1, 301.
Robertson, J. M., Wedding, J. B., Peterka, J. A. & Cermak, J. E. 1978 J. Ind. Aerodyn. 2,345.
Sadeh, W. & Brauer, H. J. 1978 NASA C.R. 3019.
Vickery, B. J. 1966 J. Fluid Mech. 25, 481.
Wedding, J. B., Robertson, J. M., Peterka, J. A. & Akins, R. E. 1978 Trans ASME I: J. Fluids Engng 100, 485