Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T06:59:31.209Z Has data issue: false hasContentIssue false

Examining capillary dynamics in rectangular and circular conduits subject to unsteady surface tension

Published online by Cambridge University Press:  23 September 2022

Martin N. Azese*
Affiliation:
Department of Mechanical Engineering, College of Engineering, Otterbein University, Westerville, OH 43081, USA Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA Applied Mechanics Laboratory, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
Jaures J. Engola
Affiliation:
Applied Mechanics Laboratory, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
Jacques Hona
Affiliation:
Applied Mechanics Laboratory, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
Emile Jean Yap
Affiliation:
Applied Mechanics Laboratory, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
Yves C. Mbono Samba
Affiliation:
Applied Mechanics Laboratory, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
*
Email address for correspondence: [email protected]

Abstract

The unsteady effects of transitioning surface tension, $\gamma (t)$, on the dynamics of capillary imbibition in channels of arbitrary shape are analytically investigated with a focus on rectangular and circular channels. With proper scaling, two unsteady models for $\gamma (t)$ are defined and used to highlight this transient behaviour. The convoluted dynamics at the flow front are correctly captured in the governing equations, which are rigorously analysed using unsteady eigenfunction expansion. Then, the final solution and data are obtained by employing the Runge–Kutta fourth-order scheme elegantly applied simultaneously to two derived nonlinear ordinary differential equations. Ultimately, the results are more accurate compared with previous studies. Dynamics and kinematic similarity between rectangular and circular channels are investigated and discussed and the conditions for equivalence in both channels are highlighted. Using a small parameter ($\epsilon$) that stretches the time scale, we successfully use a robust asymptotic analysis to develop and capture the long-time dynamics. Ultimately, we recover the Lucas–Washburn regime analysed in Washburn (Phys. Rev., vol. 17, 1921, pp. 273–283), Lucas (Kolloidn. Z., vol. 23, 1918, pp. 15–22) for steady surface tension where the variations of depth and rate with time result in $h\thicksim t^{1/2}$ and $v \thicksim t^{-1/2}$. In the end, the three forces, namely the inertia, $F_{v}$, the viscous, $F_{\mu }$, and the surface tension, $F_{\gamma }$, are briefly analysed and used to highlight three main distinct regimes. We show that at early times, $F_{v}/F_{\gamma } \thicksim 1$, whereas at a long time, $F_{\mu }/F_{\gamma } \thicksim -1$.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, J. & Sowerby, L. 1970 Shallow three-dimensional flows with variable surface tension. J.Fluid Mech. 42 (3), 549559.CrossRefGoogle Scholar
Akbari, M., Sinton, D. & Bahrami, M. 2011 Viscous flow in variable cross-section microchannels of arbitrary shapes. Intl J. Heat Mass Transfer 54 (17), 39703978.CrossRefGoogle Scholar
Azese, M.N. 2011 Modified time-dependent penetration length and inlet pressure field in rectangular and cylindrical channel flows driven by non-mechanical forces. J.Fluids Engng 133 (11), 111205.CrossRefGoogle Scholar
Azese, M.N. 2018 Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid. Phys. Fluids 30 (2), 023103.CrossRefGoogle Scholar
Azese, M.N. 2019 On the detection, measurement, and characterization of slip-velocity in Couette-rheology involving viscoelastic liquids. Phys. Fluids 31 (2), 023101.CrossRefGoogle Scholar
Baek, S., Jeong, S., Seo, J., Lee, S., Park, S., Choi, J., Jeong, H. & Sung, Y. 2021 Effects of tube radius and surface tension on capillary rise dynamics of water/butanol mixtures. Appl. Sci. 11 (8).CrossRefGoogle Scholar
Bahrami, M., Michael Yovanovich, M. & Richard Culham, J. 2007 A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section. Intl J. Heat Mass Transfer 50 (13), 24922502.CrossRefGoogle Scholar
Bhattacharya, S., Azese, M.N. & Singha, S. 2017 Rigorous theory for transient capillary imbibition in channels of arbitrary cross section. Theor. Comput. Fluid Dyn. 31 (2), 137157.CrossRefGoogle Scholar
Bhattacharya, S. & Gurung, D. 2010 Derivation of governing equation describing time-dependent penetration length in channel flows driven by non-mechanical forces. Anal. Chim. Acta 666, 5154.CrossRefGoogle ScholarPubMed
Calver, S.N., Gaffney, E.A., Walsh, E.J., Durham, W.M. & Oliver, J.M. 2020 On the thin-film asymptotics of surface tension driven microfluidics. J.Fluid Mech. 901, A6.CrossRefGoogle Scholar
Cassir, M., Ringuedé, A. & Lair, V. 2013 Molten carbonates from fuel cells to new energy devices. In Molten Salts Chemistry (ed. F. Lantelme & H. Groult), pp. 355–371. Elsevier.CrossRefGoogle Scholar
Chebbi, R. 2007 Dynamics of liquid penetration into capillary tubes. J.Colloid Interface Sci. 315, 255260.CrossRefGoogle ScholarPubMed
Chen, E. & Xu, F. 2021 Transient Marangoni convection induced by an isothermal sidewall of a rectangular liquid pool. J.Fluid Mech. 928, A6.CrossRefGoogle Scholar
Daněk, V. 2006 Surface tension. In Physico-Chemical Analysis of Molten Electrolytes (ed. V. Daněk), pp. 271–312. Elsevier Science.CrossRefGoogle Scholar
Das, S. & Mitra, S.K. 2013 Different regimes in vertical capillary filling. Phys. Rev. E 87, 063005.CrossRefGoogle ScholarPubMed
Das, S., Waghmare, P.R. & Mitra, S.K. 2012 Early regimes of capillary filling. Phys. Rev. E 86, 067301.CrossRefGoogle ScholarPubMed
Davis, S.H., Liu, A.-K. & Sealy, G.R. 1974 Motion driven by surface-tension gradients in a tube lining. J.Fluid Mech. 62 (4), 737751.CrossRefGoogle Scholar
Dreyer, M., Delagado, A. & Rath, H.J. 1994 Capillary rise of liquid between parallel plates under microgravity. J.Colloid Interface Sci. 163, 158168.CrossRefGoogle Scholar
Dreyer, M.E. 2007 Numerical Calculations, pp. 91100. Springer.Google Scholar
Elfring, G.J., Leal, L.G. & Squires, T.M. 2016 Surface viscosity and Marangoni stresses at surfactant laden interfaces. J.Fluid Mech. 792, 712739.CrossRefGoogle Scholar
Fries, N. & Dreyer, M. 2008 An analytic solution of capillary rise restrained by gravity. J.Colloid Interface Sci. 320, 259263.CrossRefGoogle ScholarPubMed
Gaver, D.P. & Grotberg, J.B. 1990 The dynamics of a localized surfactant on a thin film. J.Fluid Mech. 213, 127148.CrossRefGoogle Scholar
Goerke, J. 1974 Lung surfactant. Biochim. Biophys. Acta 344 (3–4), 241261.CrossRefGoogle ScholarPubMed
Grotberg, J.B. 2001 Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Engng 3, 421–457.Google ScholarPubMed
Halpern, D., Jensen, O.E. & Grotberg, J.B. 1998 A theoretical study of surfactant and liquid delivery into the lung. J.Appl. Physiol. Respir. Environ. Exerc. Physiol. 85 (1), 333352.Google ScholarPubMed
Hamraoui, A. & Nylander, T. 2002 Analytical approach for the Lucas–Washburn equation. J.Colloid Interface Sci. 250, 415421.CrossRefGoogle ScholarPubMed
Hauner, I.M., Deblais, A., Beattie, J.K., Kellay, H. & Bonn, D. 2017 The dynamic surface tension of water. J.Phys. Chem. Lett. 8 (7), 15991603.CrossRefGoogle ScholarPubMed
He, D., Wylie, J.J., Huang, H. & Miura, R.M. 2016 Extension of a viscous thread with temperature-dependent viscosity and surface tension. J.Fluid Mech. 800, 720752.CrossRefGoogle Scholar
Hinton, E.M. & Woods, A.W. 2018 Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability. J.Fluid Mech. 848, 411429.CrossRefGoogle Scholar
Ichikawa, N., Hosokawa, K. & Maeda, R. 2004 Interface motion of capillary driven flow in rectangular microchannel. J.Colloid Interface Sci. 280, 155164.CrossRefGoogle ScholarPubMed
Ichikawa, N. & Satoda, Y. 1993 Interface dynamics of capillary flow in a tube under negligible gravity condition. J.Colloid Interface Sci. 162, 350355.CrossRefGoogle Scholar
Jensen, O.E. 1997 The thin liquid lining of a weakly curved cylindrical tube. J.Fluid Mech. 331, 373403.CrossRefGoogle Scholar
Ji, H., Falcon, C., Sedighi, E., Sadeghpour, A., Ju, Y.S. & Bertozzi, A.L. 2021 Thermally-driven coalescence in thin liquid film flowing down a fibre. J.Fluid Mech. 916, A19.CrossRefGoogle Scholar
Joanny, J.F. & de Gennes, P.G. 1984 A model for contact angle hysteresis. J.Chem. Phys. 81 (1), 552562.CrossRefGoogle Scholar
Kabova, Y.O., Kuznetsov, V.V. & Kabov, O.A. 2012 Temperature dependent viscosity and surface tension effects on deformations of non-isothermal falling liquid film. Intl J. Heat Mass Transfer 55 (4), 12711278.CrossRefGoogle Scholar
Kennedy, M., Phelps, D. & Ingenito, E. 1997 Mechanisms of surfactant dysfunction in early acute lung injury. Exp. Lung Res. 23 (3), 171189.CrossRefGoogle ScholarPubMed
Kiradjiev, K.B., Breward, C.J.W. & Griffiths, I.M. 2019 Surface-tension- and injection-driven spreading of a thin viscous film. J.Fluid Mech. 861, 765795.CrossRefGoogle Scholar
Levine, S., Lowndes, J., Watson, E. & Neale, G. 1980 A theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel. J.Colloid Interface Sci. 73, 136151.CrossRefGoogle Scholar
Levine, S., Reed, P., Watson, E.J. & Neale, G. 1976 A theory of the rate of rise of a liquid in a capillary. In Colloid and Interface Science (ed. M. Kerker), pp. 403–419. Academic Press.CrossRefGoogle Scholar
Liu, H. & Cao, G. 2016 Effectiveness of the Young-Laplace equation at nanoscale. Sci. Rep. 6 (1), 23936.CrossRefGoogle ScholarPubMed
Lu, G., Wang, X.-D. & Duan, Y.-Y. 2013 Study on initial stage of capillary rise dynamics. Colloids Surf. A 433, 95103.CrossRefGoogle Scholar
Lucas, R. 1918 Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloidn. Z. 23, 1522.CrossRefGoogle Scholar
Makkonen, L. 2017 A thermodynamic model of contact angle hysteresis. J.Chem. Phys. 147 (6), 064703.CrossRefGoogle ScholarPubMed
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J.Fluid Mech. 892, P1.CrossRefGoogle ScholarPubMed
Marmur, A. & Cohen, R.D. 1997 Characterization of porous media by the kinetics of liquid penetration: the vertical capillaries model. J.Colloid Interface Sci. 189, 299304.CrossRefGoogle Scholar
Merchant, G.J. & Keller, J.B. 1992 Contact angles. Phys. Fluids A 4 (3), 477485.CrossRefGoogle Scholar
Mitsoulis, E. & Heng, F.L. 1987 Extrudate swell of Newtonian fluids from converging and diverging annular dies. Rheol. Acta 26, 414417.CrossRefGoogle Scholar
Moharana, M.K. & Khandekar, S. 2013 Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Comput. Meth. Appl. Mech. Engng 259, 6476.CrossRefGoogle Scholar
Navardi, S., Bhattacharya, S. & Azese, M.N. 2016 Analytical expression for velocity profiles and flow resistance in channels with a general class of noncircular cross sections. J.Engng Maths 99, 103118.CrossRefGoogle Scholar
Navascues, G. 1979 Liquid surfaces: theory of surface tension. Rep. Prog. Phys. 42 (7), 11311186.CrossRefGoogle Scholar
Park, J., Park, J., Lim, H. & Kim, H.-Y. 2013 Shape of a large drop on a rough hydrophobic surface. Phys. Fluids 25 (2), 022102.CrossRefGoogle Scholar
Quéré, D. 1997 Inertial capillarity. Europhys. Lett. 39 (5), 533538.CrossRefGoogle Scholar
Shou, D. & Fan, J. 2015 The fastest capillary penetration of power-law fluids. Chem. Engng Sci. 137, 583589.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2008 A microscopic view on contact angle selection. Phys. Fluids 20 (5), 057101.CrossRefGoogle Scholar
Stange, M., Dreyer, M.E. & Rath, H.J. 2003 Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15, 25872601.CrossRefGoogle Scholar
Sumanasekara, U.R., Azese, M.N. & Bhattacharya, S. 2017 Transient penetration of a viscoelastic fluid in a narrow capillary channel. J.Fluid Mech. 830, 528552.CrossRefGoogle Scholar
Sun, B. 2018 Singularity-free approximate analytical solution of capillary rise dynamics. Sci. China Phys. Mech. Astron. 61 (8), 084721.CrossRefGoogle Scholar
Sun, B. 2021 Monotonic rising and oscillating of capillary-driven flow in circular cylindrical tubes. AIP Adv. 11 (2), 025227.CrossRefGoogle Scholar
Szekely, J., Neumann, A.W. & Chuang, Y.K. 1971 The rate of capillary penetration and the applicability of the washburn equation. J.Colloid Interface Sci. 35 (2), 273278.CrossRefGoogle Scholar
Waghmare, P.R. & Mitra, S.K. 2010 a Modeling of combined electroosmotic and capillary flow in microchannels. Anal. Chim. Acta 663, 117126.CrossRefGoogle ScholarPubMed
Waghmare, P.R. & Mitra, S.K. 2010 b On the derivation of pressure field distribution at the entrance of a rectangular capillary. J.Fluids Engng 132 (5), 054502.CrossRefGoogle Scholar
Washburn, E.W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273283.CrossRefGoogle Scholar
Xiao, Y., Yang, F. & Pitchumani, R. 2006 A generalized analysis of capillary flows in channels. J.Colloid Interface Sci. 298 (2), 880888.CrossRefGoogle ScholarPubMed
Zhang, W. & Xia, D. 2007 Examination of nanoflow in rectangular slits. Mol. Simul. 33 (15), 12231228.CrossRefGoogle Scholar
Zhmud, B.V., Tiberg, F. & Hallstensson, K. 2000 Dynamics of capillary rise. J.Colloid Interface Sci. 228, 263269.CrossRefGoogle ScholarPubMed
Zhong, X., Sun, B. & Liao, S. 2019 Analytic solutions of the rise dynamics of liquid in a vertical cylindrical capillary. Eur. J. Mech. B/Fluids 78, 110.CrossRefGoogle Scholar