Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:44:20.809Z Has data issue: false hasContentIssue false

The evolution of Tollmien–Sclichting waves near a leading edge

Published online by Cambridge University Press:  20 April 2006

M. E. Goldstein
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135

Abstract

The method of matched asymptotic expansions is used to study the generation of Tollmien-Schlichting waves by free-stream disturbances incident on a flat-plate boundary layer. Near the leading edge, the motion is governed by the unsteady boundary-layer equation, while farther downstream it is governed (to lowest order) by the Orr-Sommerfeld equation with slowly varying coefficients. It is shown that there is an overlap domain where the Tollmien-Schlichting wave solutions to the Orr-Sommerfeld equation and appropriate asymptotic solutions of the unsteady boundary-layer equation match, in the matched-asymptotic-expansion sense. The analysis explains how long-wavelength free-stream disturbances can generate Tollmien-Schlichting waves of much shorter wavelength. It also leads to a set of scaling laws for the asymptotic structure of the unsteady boundary layer.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. National Bureau of Standards Appl. Math. Ser. 55.
Ackerberg, R. C. & Phillips, J. H. 1972 J. Fluid Mech. 51, 137.
Brown, S. N. & Stewartson, K. 1973 Proc. Camb. Phil. Soc. 73, 493.
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics, p. 11. Blaisdell.
Gaster, M. 1974 J. Fluid Mech. 66, 465.
Goldstein, M. E. 1982 NASA TM 83026.
Goldstein, S. 1960 Lectures on Fluid Mechanics. Interscience.
Lam, S. H. & Rott, N. 1960 Theory of linearized time-dependent boundary layers. Cornell Univ. Grad. School of Aero. Engng Rep. AFOSR TN-60-1100.Google Scholar
Lighthill, M. J. 1954 Proc. R. Soc. Lond. A, 224, 1.
Lin, C. C. 1945 Q. Appl. Math. 3, 117.
Lin, C. C. 1946 Q. Appl. Math. 3, 277.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Messiter, A. F. 1970 SIAM J. Appl. Math. 18, 241.
Miles, J. W. 1962 J. Fluid Mech. 13, 427.
Moore, F. K. 1951 NACA TN 2471.
Morkovin, M. V. 1969 Air Force Flight Dyn. Lab., Wright–Patterson AFB, Ohio, Rep. AFFDL-TR-68-149.
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.
Reid, W. H. 1965 In Basic Developments in Fluid Dynamics, vol. I (ed. Maurice Holt), pp. 249307. Academic.
Reshotko, E. 1976 Ann. Rev. Fluid Mech. 8, 311.
Saric, W. S. & Nayfeh, A. H. 1975 Phys. Fluids 18, 945.
Smith, F. T. 1979 Proc. R. Soc. Lond A, 366, 91.
Stewartson, K. 1969 Mathematika 16, 106.
Tollmien, W. 1929 Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 21. [Translated as NACA 609 (1931).]
Tollmien, W. 1947 Z. angew. Math. Mech. 27, 33, 70.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics, annotated edn. Parabolic.