Published online by Cambridge University Press: 15 May 2014
The dissipation rate, $\varepsilon _{\theta }$, of a passive scalar (temperature in air) emitted from a concentrated source into a fully developed high-aspect-ratio turbulent channel flow is studied. The goal of the present work is to investigate the return to isotropy of the scalar field when the scalar is injected in a highly anisotropic manner into an inhomogeneous turbulent flow at small scales. Both experiments and direct numerical simulations (DNS) were used to study the downstream evolution of $\varepsilon _{\theta }$ for scalar fields generated by line sources located at the channel centreline $(y_s/h = 1.0)$ and near the wall $(y_s/h = 0.17)$. The temperature fluctuations and temperature derivatives were measured by means of a pair of parallel cold-wire thermometers in a flow at $Re_{\tau } = 520$. The DNS were performed at $Re_{\tau } = 190$ using a spectral method to solve the continuity and Navier–Stokes equations, and a flux integral method (Germaine, Mydlarski & Cortelezzi, J. Comput. Phys., vol. 174, 2001, pp. 614–648) for the advection–diffusion equation. The statistics of the scalar field computed from both experimental and numerical data were found to be in good agreement, with certain discrepancies that were attributable to the difference in the Reynolds numbers of the two flows. A return to isotropy of the small scales was never perfectly observed in any region of the channel for the downstream distances studied herein. However, a continuous decay of the small-scale anisotropy was observed for the scalar field generated by the centreline line source in both the experiments and DNS. The scalar mixing was found to be more rapid in the near-wall region, where the experimental results exhibited low levels of small-scale anisotropy. However, the DNS, which were performed at lower $Re_{\tau }$, showed that persistent anisotropy can also exist near the wall, independently of the downstream location. The role of the mean velocity gradient in the production of $\varepsilon _{\theta }$ (and therefore anisotropy) in the near-wall region was highlighted.