Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T21:54:23.307Z Has data issue: false hasContentIssue false

The evolution of segregation in dense inclined flows of binary mixtures of spheres

Published online by Cambridge University Press:  08 October 2015

Michele Larcher*
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento 38123, Italy
James T. Jenkins
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
*
Email address for correspondence: [email protected]

Abstract

We consider the evolution of particle segregation in collisional flows of two types of spheres down rigid bumpy inclines in the absence of sidewalls. We restrict our analysis to dense flows and use an extension of kinetic theory to predict the concentration of the mixture and the profiles of mixture velocity and granular temperature. A kinetic theory for a binary mixture of nearly elastic spheres that do not differ by much in their size or mass is employed to predict the evolution of the concentration fractions of the two types of spheres. We treat situations in which the flow of the mixture is steady and uniform, but the segregation evolves, either in space or in time. Comparisons of the predictions with the results of discrete numerical simulation and with physical experiments are, in general, good.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, M., Satoh, M. & Miyanami, K. 1991 Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation. Powder Technol. 68, 145152.Google Scholar
Armanini, A., Fraccarollo, L. & Larcher, M. 2005 Debris flow. In Encyclopedia of Hydrological Sciences (ed. Anderson, M.), chap. 142, pp. 21732186. Wiley.Google Scholar
Arnarson, B. Ö & Jenkins, J. T. 2000 Particle segregation in the context of the species momentum balances. In Traffic and Granular Flow ‘99: Social, Traffic and Granular Dynamics (ed. Helbing, D., Herrmann, H. J., Schreckenberg, M. & Wolf, D. E.), pp. 481487. Springer.Google Scholar
Arnarson, B. Ö & Jenkins, J. T. 2004 Binary mixtures of inelastic spheres: simplified constitutive theory. Phys. Fluids 16, 45434550.CrossRefGoogle Scholar
Atkin, R. J. 1976 Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209244.Google Scholar
Drahun, J. A. & Bridgwater, J. 1983 The mechanisms of free surface segregation. Powder Technol. 36, 3953.Google Scholar
Fan, Y. & Hill, K. M. 2011 Theory for shear-induced segregation of dense granular mixtures. New J. Phys. 13, 095009.Google Scholar
Fan, Y., Schlick, C. P., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2014 Modelling size segregation of granular materials: roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Felix, G. & Thomas, N. 2004 Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70, 051307.Google Scholar
Garzo, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.Google Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
Gray, J. M. N. T. & Ancey, C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.Google Scholar
Hill, K. M., Fan, Y., Zhang, J., Niekerk, C. V., Zastrow, E., Hagness, S. C. & Bernhard, J. T. 2010 Granular segregation studies for the development of a radar-based three-dimensional sensing system. Granul. Matt. 12, 201207.Google Scholar
Jain, N., Ottino, J. M. & Lueptow, R. M. 2005a Combined size and density segregation and mixing in noncircular tumblers. Phys. Rev. E 71, 051301.CrossRefGoogle ScholarPubMed
Jain, N., Ottino, J. M. & Lueptow, R. M. 2005b Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matt. 7, 6981.Google Scholar
Jakob, M. & Hungr, O. 2005 Debris-flow Hazards and Related Phenomena. Springer.Google Scholar
Jenkins, J. T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10, 4752.Google Scholar
Jenkins, J. T. & Berzi, D. K. 2010 Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matt. 12, 151158.Google Scholar
Jenkins, J. T. & Yoon, D. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301.CrossRefGoogle ScholarPubMed
Jenkins, J. T. & Zhang, C. 2010 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 12281235.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Larcher, M. & Jenkins, J. T. 2010 Size segregation in dry granular flows of binary mixtures. In IUTAM–ISIMM Symposium on Mathematical Modelling and Physical Instances on Granular Flows (ed. Goddard, J., Jenkins, J. T. & Giovine, P.), AIP Conference Proceedings, vol. 1227, pp. 363370.Google Scholar
Larcher, M. & Jenkins, J. T. 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25, 113301.CrossRefGoogle Scholar
Marks, B., Rognon, P. & Einav, I. 2012 Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499511.Google Scholar
Metcalfe, G. & Shattuck, M. 1996 Pattern formation during mixing and segregation of flowing granular materials. Physica A 233, 709717.Google Scholar
Mitarai, N. & Nakanishi, H. 2007 Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress. Phys. Rev. E 75, 031305.CrossRefGoogle ScholarPubMed
Muzzio, F. J., Shinbrot, T. & Glasser, B. J. 2002 Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol. 124, 17.Google Scholar
Savage, S. B. & Lun, C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.Google Scholar
Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane. Bagnold scaling and rheology. Phys. Rev. E 64, 051302.Google Scholar
Takahashi, T. 2014 Debris Flow: Mechanics, Prediction and Countermeasures, 2nd edn. CRC Press.Google Scholar
Thornton, A., Weinhart, T., Luding, S. & Bokhove, O. 2012 Modeling of particle size segregation: calibration using the discrete particle method. Internat. J. Mod. Phys. C 23, 1240014.Google Scholar
Torquato, S. 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51, 31703182.Google Scholar
Tripathi, A. & Khakhar, D. V. 2011 Rheology of binary mixtures in the dense flow regime. Phys. Fluids 23, 113302.Google Scholar
Tunuguntla, D. R., Bokhove, O. & Thornton, A. R. 2014 A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749, 99112.Google Scholar
Weinhart, T., Luding, S. & Thornton, A. 2013 From discrete particles to continuum fields in mixtures. In Powders and Grains 2013 (ed. Yu, A., Dong, K., Yang, R. & Luding, S.), AIP Conference Proceedings, vol. 1542, pp. 12021205.Google Scholar
Wiederseiner, S., Andreini, N., Épely-Chauvin, G., Moser, G., Monnereau, M., Gray, J. M. N. T. & Ancey, C. 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301.Google Scholar
Xu, H., Louge, M. & Reeves, A. 2003 Solutions of the kinetic theory for bounded collisional granular flows. Continuum Mech. Thermodyn. 15, 321349.Google Scholar