Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T05:09:27.350Z Has data issue: false hasContentIssue false

The evolution of cyclonic disturbances and lee waves over a topography in a rapidly rotating stratified flow

Published online by Cambridge University Press:  21 April 2006

Hamid T. Hefazi
Affiliation:
Department of Mechanical Engineering, California State University, Long Beach, CA 90840, USA
H. K. Cheng
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089, USA

Abstract

The temporal evolution of the flow patterns about a shallow bottom topography in a deep, rapidly rotating, stratified flow is studied on the basis of an inviscid Boussinesq model. The initial boundary-value problem, linearized for a thin three-dimensional obstacle, is solved for an impulsively started flow. The indicial response obtained reveals a window for the horizontal wavenumber spectra of the obstacle geometry. Only the portion of spectra within this window, which is shut at the start and widens linearly with increasing time, contributes to the solution. Thus, only the relatively large-scale, cyclonic feature associated with the wavenumber origin can dominate the flow in the early period, while the more familiar inertial wave system emerges much later.

Examples of solutions computed via an FFT algorithm confirm that, except in the two opposite limits for the zero and infinite stratification, the cyclonic disturbance and inertial waves coexist, but a solitary pressure hill associated with the cyclonic disturbance remains dominant throughout most evolution stages. For a sufficiently strong stratification, the solution to the linear pressure equation suggests the emergence of a secondary eddy in the lee; its significance and validity are discussed.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Brown, S. N. & Cheng H. K. 1987 J. Fluid Mech. 171, 359.
Buzzi, A. & Tibaldi, S. 1977 Q. J. R. Met. Soc. 103, 135.
Chen R. 1982 Scientia Sinica 27, 184.
Cheng H. K. 1977 Z. Angew. Math. Phys. 28, 753.
Cheng H. K., Hefazi, H. & Brown S. N. 1984 J. Fluid Mech. 141, 431.
Cheng, H. K. & Johnson E. R. 1982 Proc. R. Soc. Lond. A 383, 71.
Chung Y. S., Hage, K. D. & Reinelt E. R. 1976 Mon. Weather Rev. 104, 879.
Egger J. 1974 Mon. Weather Rev. 102, 847.
Hefazi H. 1985 Ph.D. thesis, University of Southern California.
Hide R. 1971 J. Fluid Mech. 49, 745.
Hide R., Ibbetson, A. & Lighthill M. J. 1968 J. Fluid Mech. 32, 251.
Hogg N. G. 1980 Effect of bottom topography on ocean currents. Orographic Effects in Planetary Flows; GARP Publ. Series, vol. 23, p. 169.
Huppert H. E. 1975 J. Fluid Mech. 67, 397.
Huppert, H. E. & Bryan K. 1975 Deep-Sea Res. 23, 655.
Ingersoll A. P. 1969 J. Atmos. Sci. 26, 744.
Lighthill M. J. 1965 J. Inst. Maths Applics 1, 1.
Lighthill M. J. 1967 J. Fluid Mech. 27, 725.
Lighthill M. J. 1978 Waves in Fluids. Cambridge University Press.
Manabe, S. & Terpstra T. B. 1974 J. Atmos. Sci. 31, 3.
Parodi M. 1957 Introduction A L'etude L'analyse Symbolique. Paris: Imprimeur-Libraire.
Pedlosky J. 1979 Geophysical Fluid Dynamics. Springer.
Pierrehumbert R. T. 1987 Mesocale Analysis Forecasting, pp. 493575. American Meteorological Society.
Quenby P. 1948 Bull. Am. Met. Soc. 29, 16.
Redekopp L. G. 1975 Geophys. Fluid Dyn. 6, 289.
Reitan C. H. 1974 Mon. Weather Rev. 102, 861.
Richardson P. L. 1980 J. Mar. Res. 28, 673.
Smith R. 1979a J. Atmos Sci. 36, 177.
Smith R. 1979b J. Atmos. Sci. 36, 2395.
Smith R. 1979c Adv. Geophys. 21, 87.
Whitham G. B. 1973 Linear and Nonlinear Waves. Wiley.
Yih C. S. 1965 Dynamics of Nonhomogeneous Fluids. Macmillan.
Yih C. S. 1980 Stratified Flows. Academic.