Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T07:21:45.028Z Has data issue: false hasContentIssue false

The evolution of a front in turbulent thermal wind balance. Part 1. Theory

Published online by Cambridge University Press:  04 July 2018

Matthew N. Crowe
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
John R. Taylor*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

Here, we examine the influence of small-scale turbulence on the evolution of fronts in the ocean and atmosphere. Specifically, we consider the evolution of an initially balanced density front subject to an imposed viscosity and diffusivity as a simple analogue for small-scale turbulence. At late times, the dominant balance is found to be the quasisteady turbulent thermal wind balance with time evolution due to an advection–diffusion balance in the buoyancy equation. We use the leading-order balance to determine analytical similarity solutions for the spreading of a front and find that the spreading rate is maximum for an intermediate value of the Ekman number, with the spreading resulting from shear dispersion associated with the cross-front flow and vertical diffusion of density. In response to shear dispersion, the front evolves towards a density profile that is nearly linear in the cross-front coordinate. At the edges of the frontal zone, the density field develops large curvature, and these regions are associated with narrow bands of intense vertical velocity.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blumen, W. 2000 Inertial oscillations and frontogenesis in a zero potential vorticity model. J. Phys. Oceanogr. 30, 3139.Google Scholar
Charney, J. G. 1973 Symmetric circulations in idealized models. In Planetary Fluid Dynamics, pp. 128141. D. Reidel.Google Scholar
Cronin, M. F. & Kessler, W. S. 2009 Near-surface shear flow in the Tropical Pacific Cold Tongue Front. J. Phys. Oceanogr. 39 (5), 12001215.Google Scholar
D’Asaro, E., Lee, C., Rainville, L., Harcourt, R. & Thomas, L. 2011 Enhanced turbulence and energy dissipation at ocean fronts. Science 332 (6027), 318322.Google Scholar
Eliassen, A. 1962 On the vertical circulation in frontal zones. Geofys. Publ. 24 (4), 147160.Google Scholar
Enriquez, R. M. & Taylor, J. R. 2015 Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. ICES J. Mar. Sci. 72 (6), 19261941.Google Scholar
Erdogan, M. E. & Chatwin, P. C. 1967 The effects of curvature and buoyancy on the laminar dispersion of solute in a horizontal tube. J. Fluid Mech. 29, 465484.Google Scholar
Ferrari, R. 2011 A frontal challenge for climate models. Science 332 (6027), 316317.Google Scholar
Ferrari, R. & Young, W. R. 1997 On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations. J. Mar. Res. 55, 10691101.Google Scholar
Garrett, C. J. R. & Loder, J. W. 1981 Dynamical aspects of shallow sea fronts. Phil. Trans. R. Soc. Lond. A 302, 563581.Google Scholar
Gula, J., Molemaker, M. J. & McWilliams, J. C. 2014 Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 44, 26172643.Google Scholar
Holton, J. R. & Hakim, G. J. 2012 An Introduction to Dynamic Meteorology, vol. 88. Academic.Google Scholar
Hoskins, B. J. 1982 The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131151.Google Scholar
Hoskins, B. J. & Bretherton, F. P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 1137.Google Scholar
Johnston, T. M., Rudnick, D. L. & Pallàs-Sanz, E. 2011 Elevated mixing at a front. J. Geophys. Res. 116, C11033.Google Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with the nonlocal boundary layer parametrization. Rev. Geophys. 32 (4), 363403.Google Scholar
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472, 20160117.Google Scholar
McWilliams, J. C. 2017 Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech. 823, 391432.Google Scholar
McWilliams, J. C., Gula, J., Molemaker, M. J., Renault, L. & Shchepetkin, A. F. 2015 Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr. 45, 19882005.Google Scholar
Orlanski, I. & Ross, B. B. 1977 The circulation associated with a cold front. Part I: dry case. J. Atmos. Sci. 34, 16191633.Google Scholar
Ostdiek, V. & Blumen, W. 1997 A dynamic trio: inertial oscillation, deformation frontogenesis, and the Ekman–Taylor boundary layer. J. Atmos. Sci. 54, 14901502.Google Scholar
Rudnick, D. L. & Luyten, J. R. 1996 Intensive surveys of the Azores Front. 1: tracers and dynamics. J. Geophys. Res. 101, 923939.Google Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Shakespeare, C. J. & Taylor, J. R. 2013 A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech. 736, 366413.Google Scholar
Smith, R. 1982 Similarity solutions of a non-linear diffusion equation. IMA J. Appl. Maths 28 (2), 149160.Google Scholar
Sullivan, P. P. & McWilliams, J. C. 2018 Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 837, 13411380.Google Scholar
Taylor, J. R. 2016 Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Rev. Lett. 43, 57845792.Google Scholar
Taylor, J. R. & Ferrari, R. 2010 Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr. 40, 12221242.Google Scholar
Taylor, J. R. & Ferrari, R. 2011 Numerical simulations of the competition between wind-driven mixing and surface heating in triggering spring phytoplankton blooms. Limnol. Oceanogr. 56 (6), 22932307.Google Scholar
Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. 2013 Symmetric instability in the Gulf Stream. Deep Sea Res. 91, 96110.Google Scholar
Thompson, L. 2000 Ekman layers and two-dimensional frontogenesis in the upper ocean. J. Geophys. Res. 105 (C3), 64376451.Google Scholar
Wenegrat, J. O. & McPhaden, M. J. 2016 Wind, waves, and fronts: frictional effects in a generalized Ekman model. J. Phys. Oceanogr. 46 (2), 371394.Google Scholar
Young, W. R. 1994 The subinertial mixed layer approximation. J. Phys. Oceanogr. 24, 18121826.Google Scholar