Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:48:40.244Z Has data issue: true hasContentIssue false

Eulerian direct interaction applied to the statistical motion of particles in a turbulent fluid

Published online by Cambridge University Press:  19 April 2006

M. W. Reeks
Affiliation:
Central Electricity Generating Board, Research Division, Berkeley Nuclear Laboratories, Gloucestershire GL13 9PB, England

Abstract

Eulerian direct interaction is used to close Liouville's equation central to the transport of particles in a turbulent fluid where the dominant drag force is derived from the particle and local fluid velocities. The reliability of the equation is then tested by comparison of solutions with those of a computer simulation of particle motion with Stokes drag in a random velocity field. Using an empirical drag law accurate for particle Reynolds numbers up to 500, formulae are derived for the statistical moments central to particle dispersion for a weak drag force operating in a Gaussian isotropic stationary velocity field. These show for instance that the long time particle diffusion coefficient is in general greater than the equivalent value based on Stokes drag.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frisch, U. 1968 Wave propagation in random media. In Probabilistic Methods in Applied Mathematics, vol. 1 (ed. A. T. Bharucha-Reid). Academic.
Kraichnan, R. H. 1961 J. Math. Phys. 2, 124.
Kraichnan, R. H. 1966 Dynamics of Fluids and Plasmas (ed. S. I. Pai.), p. 239. Academic.
Kraichnan, R. H. 1970a Phys. Fluids 13, 22.
Kraichnan, R. H. 1970b J. Fluid Mech. 41, 189.
Kraichnan, R. H. 1971 J. Fluid Mech. 47, 513.
Kraichnan, R. H. 1977a J. Fluid Mech. 81, 385.
Kraichnan, R. H. 1977b J. Fluid Mech. 83, 349.
Kraichnan, R. H. & Orszag, S. A. 1967 Phys. Fluids 10, 1720.
Lundgren, T. S. & Pointin, Y. B. 1976 Phys. Fluids 19, 355.
Orzag, S. A. 1968 Proc. of Symp. on Turbulence of Fluids and Plasmas, Microwave Res. Inst. Symposia Series, vol. XVIII, pp. 1728. Brooklyn, N.Y.: Polytechnic Press.
Phythian, R. 1975 J. Fluid Mech. 67, 145.
Phythian, R. 1978 The application of renormalized perturbation theory in turbulence and related problems. In Conf. Mathematical Modelling of Turbulent Diffusion in the Environment, University of Liverpool (to be published).
Pismen, L. M. & Nir, A. 1978 J. Fluid Mech. 84, 193.
Reeks, M. W. 1977 J. Fluid Mech. 83, 529.
Roberts, P. H. 1961 J. Fluid Mech. 11, 247.
Sturrock, P. 1966 Phys. Rev. 141, 186.
Serafini, J. S. 1954 N.A.C.A. Tech. Rep. 1159.