Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:53:13.676Z Has data issue: false hasContentIssue false

Equilibrium gas–liquid–solid contact angle from density-functional theory

Published online by Cambridge University Press:  15 December 2011

Antonio Pereira
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
Serafim Kalliadasis*
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

We investigate the equilibrium of a fluid in contact with a solid boundary through a density-functional theory. Depending on the conditions, the fluid can be in one phase, gas or liquid, or two phases, while the wall induces an external field acting on the fluid particles. We first examine the case of a liquid film in contact with the wall. We construct bifurcation diagrams for the film thickness as a function of the chemical potential. At a specific value of the chemical potential, two equally stable films, a thin one and a thick one, can coexist. As saturation is approached, the thickness of the thick film tends to infinity. This allows the construction of a liquid–gas interface that forms a well-defined contact angle with the wall.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Argaman, N. & Makov, G. 2000 Density functional theory: An introduction. Am. J. Phys. 68, 6979.CrossRefGoogle Scholar
2.Barker, J. A. & Henderson, D. 1967 Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47, 4714.CrossRefGoogle Scholar
3.Bauer, C. & Dietrich, S. 1999 Quantitative study of laterally inhomogeneous wetting films. Eur. Phys. J. B 10, 767.CrossRefGoogle Scholar
4.Berim, G. O. & Ruckenstein, E. 2008a Microscopic calculation of the sticking force for nanodrops on an inclined surface. J. Chem. Phys. 129, 114709.CrossRefGoogle Scholar
5.Berim, G. O. & Ruckenstein, E. 2008b Nanodrop on a nanorough solid surface: density functional theory considerations. J. Chem. Phys. 129, 014798.CrossRefGoogle ScholarPubMed
6.Berim, G. O. & Ruckenstein, E. 2009 Simple expression for the dependence of the nanodrop contact angle on liquid–solid interactions and temperature. J. Chem. Phys. 130, 044709.CrossRefGoogle ScholarPubMed
7.Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739.CrossRefGoogle Scholar
8.Dussan, E. B. V & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
9.Evans, R. 1979 The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143.CrossRefGoogle Scholar
10.Evans, R. 1992 Density functionals on the theory of non-uniform fluids. In Fundamentals of Inhomogeneous Fluids (ed. Henderson, D. ), pp. 85176. Marcel Dekker.Google Scholar
11.Evans, R. & Parry, A. 1990 Liquids at interfaces: what can a theorist contribute? J. Phys.: Condens. Matter 2, SA15SA32.Google Scholar
12.de Gennes, P.-G. 1985 Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827.CrossRefGoogle Scholar
13.Getta, T. & Dietrich, S. 1998 Line tension between fluid phases and a substrate. Phys. Rev. E 57, 655.CrossRefGoogle Scholar
14.Gramlich, C. M., Mazouchi, A. & Homsy, G. M. 2004 Time-dependent free surface Stokes flow with a moving contact line. II. Flow over wedges and trenches. Phys. Fluids 16, 16601667.CrossRefGoogle Scholar
15.Henderson, J. R. 2004 Statistical mechanics of fluids adsorbed in planar wedges: Finite contact angle. Phys. Rev. E 69, 061613.CrossRefGoogle ScholarPubMed
16.Henderson, J. R. 2005 Statistical mechanics of the disjoining pressure of a planar film. Phys. Rev. E 72, 051602.CrossRefGoogle ScholarPubMed
17.Herring, A. R. & Henderson, J. R. 2010 Simulation study of the disjoining pressure profile through a three-phase contact line. J. Chem. Phys. 132, 084702.CrossRefGoogle ScholarPubMed
18.Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
19.Indekeu, J. O. 1994 Line tension at wetting. Intl J. Mod. Phys. B 8, 309.CrossRefGoogle Scholar
20.Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics, Part I. Pergamon.Google Scholar
21.Miranville, A. 2003 Generalized Cahn–Hilliard equations based on a microforce balance. J. Appl. Maths 4, 165185.CrossRefGoogle Scholar
22.Moffat, H. K. 1963 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.CrossRefGoogle Scholar
23.Nold, A., Malijevský, A. & Kalliadasis, S. 2011a Critical assessment of effective interfacial potentials based on a density functional theory for wetting phenomena on curved substrates. Eur. Phys. J. Special Topics 197, 185191.CrossRefGoogle Scholar
24.Nold, A., Malijevský, A. & Kalliadasis, S. 2011b Wetting on a spherical wall: Influence of liquid–gas interfacial properties. Phys. Rev. E 84, 021603.CrossRefGoogle ScholarPubMed
25.Pismen, L. M. 2002 Mesoscopic hydrodynamics of contact line motion. Colloids Surf. A 206, 11.CrossRefGoogle Scholar
26.Plischke, M. & Bergersen, B. 2006 Equilibrium Statistical Physics. World Scientific.CrossRefGoogle Scholar
27.Quéré, D. 2007 Three-phase capillarity. In Thin Films of Soft Matter (ed. Kalliadasis, S. & Thiele, U. ). pp. 115136. Springer.CrossRefGoogle Scholar
28.Rosenfeld, Y. 1989 Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980.CrossRefGoogle ScholarPubMed
29.Savva, N. & Kalliadasis, S. 2009 Two-dimensional droplet spreading over topographical substrates. Phys. Fluids 21, 092102.CrossRefGoogle Scholar
30.Savva, N., Kalliadasis, S. & Pavliotis, G. A. 2010 Two-dimensional droplet spreading over random topographical substrates. Phys. Rev. Lett. 104, 084501.CrossRefGoogle ScholarPubMed
31.Schick, M. 1990 Introduction to wetting phenomena. In Liquids at Interfaces, Les Houches, Session XLVIII (ed. Chavrolin, J., Joanny, J. F. & Zinn-Justin, J. ). p. 415. Elsevier.Google Scholar
32.Schwartz, L. W. & Eley, R. R. 1998 Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 202, 173188.CrossRefGoogle Scholar
33.Seemann, R., Herminghaus, S., Neto, C., Schlagowski, S., Podzimek, D., Konrad, R., Mantz, H. & Jacobs, K. 2005 Dynamics and structure formation in thin polymer melt films. J. Phys. Condens. Matter 17, S267S290.CrossRefGoogle Scholar
34.Sullivan, D. E. 1981 Surface tension and contact angle of a liquid–solid interface. J. Chem. Phys. 74, 26042615.CrossRefGoogle Scholar
35.Tarazona, P. 1985 Free-energy density functional for hard spheres. Phys. Rev. A 31, 26722679.CrossRefGoogle ScholarPubMed
36.Tarazona, P. & Evans, R. 1983 Wetting transitions at models of a solid–gas interface. Mol. Phys. 48, 799831.CrossRefGoogle Scholar
37.Tarazona, P., da Gama, M. M. T. & Evans, R. 1983 Wetting transitions at fluid–fluid interfaces. I. The order of the transition. Mol. Phys. 49, 283300.CrossRefGoogle Scholar
38.Teletzke, G. F., Scriven, L. E. & Davis, H. T. 1982 Gradient theory of wetting transitions. J. Colloid Interface Sci. 87, 550571.CrossRefGoogle Scholar
39.Weeks, J. D., Chandler, D. & Andersen, H. C. 1971 Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237.CrossRefGoogle Scholar