Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T08:31:57.492Z Has data issue: false hasContentIssue false

Entrainment in plane turbulent pure plumes

Published online by Cambridge University Press:  14 August 2014

S. Paillat*
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75252 Paris CEDEX 05, France
E. Kaminski
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75252 Paris CEDEX 05, France
*
Email address for correspondence: [email protected]

Abstract

Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradbury, L. J. S. 1965 The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 23 (1), 3164.Google Scholar
van den Bremer, T. S. & Hunt, G. R. 2014 Two-dimensional planar plumes and fountains. J. Fluid Mech. 750, 210244.CrossRefGoogle Scholar
Carazzo, G., Kaminski, E. & Tait, S. 2006 The route of self-similarity in turbulent jets and plumes. J. Fluid Mech. 547, 137148.Google Scholar
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Turbulent jets and plumes. In Mixing in Inland and Coastal Waters, chap. 9, pp. 315389. Ed. Academic Press.Google Scholar
Glaze, L. S., Baloga, S. M. & Wimert, J. 2011 Explosive volcanic eruptions from linear vents on Earth, Venus, and Mars: comparisons with circular vent eruptions. J. Geophys. Res. 116, 1011.Google Scholar
Govindarajan, R. 2002 Universal behavior of entrainment due to coherent structures in turbulent shear flow. Phys. Rev. Lett. 88 (13), 134503-1.CrossRefGoogle ScholarPubMed
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (Part 3), 465495.Google Scholar
Heskestad, G. 1965 Hot-wire measurements in a plane turbulent jet. Trans. ASME J. Appl. Mech. 32, 721734.Google Scholar
Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech. 526, 361376.CrossRefGoogle Scholar
Kotsovinos, N. E.1975 A study of the entrainment and turbulence in a plane buoyant jet. PhD thesis, California Institute of Technology.Google Scholar
Kotsovinos, N. E. 1977 Plane turbulent buoyant jets. Part 1. Integral properties. J. Fluid Mech. 81 (1), 2544.Google Scholar
Lee, S. L. & Emmons, H. W. 1961 A study of natural convection above line fires. J. Fluid Mech. 11 (3), 353368.Google Scholar
Linden, P. F. 2000 Convection in the environment. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, chap. 6, pp. 289345. Cambridge University Press.Google Scholar
Miller, D. R. & Comings, E. W. 1957 Static pressure distribution in the free turbulent jet. J. Fluid Mech. 3 (1), 116.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.Google Scholar
Paillat, S. & Kaminski, E. 2014 Second-order model of entrainment in planar turbulent jets at low Reynolds number. Phys. Fluids 26, 045110.Google Scholar
Papanicolaou, P. N. & List, E. J. 1988 Investigations of round turbulent buoyant jets. J. Fluid Mech. 195, 341391.CrossRefGoogle Scholar
Priestley, C. H. B. & Ball, F. K. 1955 Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81, 144157.CrossRefGoogle Scholar
Ramaprian, B. R. & Chandrasekhara, M. S. 1985 LDA measurements in plane turbulent jets. J. Fluids Engng, Trans. ASME 107, 264271.CrossRefGoogle Scholar
Ramaprian, B. R. & Chandrasekhara, M. S. 1989 Measurements in vertical plane turbulent plumes. J. Fluids Engng, Trans. ASME 111, 6977.Google Scholar
Rouse, H., Yih, C. S. & Humphreys, H. W. 1952 Gravitational convection from a boundary source. Tellus 4, 201210.Google Scholar
Rowland, J. C., Stacey, M. T. & Dietrich, W. E. 2009 Turbulent characteristics of a shallow wall-bounded plane jet: experimental implications for river mouth hydrodynamics. J. Fluid Mech. 627, 423449.Google Scholar
Stothers, R. B. 1989 Turbulent atmospheric plumes above line sources with an application to volcanic fissure eruption on the terrestrial planets. J. Atmos. Sci. 46 (17), 26622670.Google Scholar
Stothers, R. B., Wolff, J. A., Self, S. & Rampino, M. R. 1986 Basaltic fissure eruptions, plume heights and atmospheric aerosols. Geophys. Res. Lett. 13 (8), 725728.Google Scholar
Wang, H. & Law, A. W.-K. 2002 Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397428.CrossRefGoogle Scholar
Wettlaufer, J. S., Worster, G. M. & Huppert, H. E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316.Google Scholar
Widell, K., Fer, I. & Haugan, P. M. 2006 Salt release from warming sea ice. Geophys. Res. Lett. 33, L12501.Google Scholar
Woods, A. W. 1993 A model of the plumes above basaltic fissure eruptions. Geophys. Res. Lett. 20, 11151118.Google Scholar