Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T11:09:59.603Z Has data issue: true hasContentIssue false

Energy transfer and third-order law in forced anisotropic magneto-hydrodynamic turbulence with hyper-viscosity

Published online by Cambridge University Press:  27 October 2023

Bin Jiang
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Cheng Li
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Yan Yang*
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
Kangcheng Zhou
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Department of Mechanical Engineering, The University of Hong Kong, 999077, PR China
William H. Matthaeus
Affiliation:
Department of Physics and Astronomy, University of Delaware, DE 19716, USA
Minping Wan*
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The third-order law links energy transfer rates in the inertial range of magneto- hydrodynamic (MHD) turbulence with third-order structure functions. Anisotropy, a typical property in the solar wind, challenges the applicability of the third-order law with the isotropic assumption. To shed light on the energy transfer process in the presence of anisotropy, we conducted direct numerical simulations of forced MHD turbulence with normal and hyper-viscosity under various strengths of the external magnetic field ($B_0$), and calculated three forms of third-order structure function with or without averaging of the azimuthal or polar angles with respect to $B_0$ direction. Correspondingly, three estimated energy transfer rates were obtained. The result shows that the peak of normalized third-order structure function occurs at larger scales closer to the $B_0$ direction, and the maximum of longitudinal transfer rates shifts away from the $B_0$ direction at larger $B_0$. Compared with normal viscous cases, hyper-viscous cases can attain better separated inertial range, thus facilitating the estimation of the energy cascade rates. We find that the widespread use of the isotropic form of the third-order law in estimating the energy transfer rates is questionable in some cases, especially when the anisotropy arising from the mean magnetic field is inevitable. In contrast, the direction-averaged third-order structure function properly accounts for the effect of anisotropy and predicts the energy transfer rates and inertial range accurately, even at very high $B_0$. With limited statistics, the third-order structure function shows a stronger dependence on averaging of azimuthal angles than the time, especially for high $B_0$ cases. These findings provide insights into the anisotropic effect on the estimation of energy transfer rates.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2013 Large-scale magnetic fields in magnetohydrodynamic turbulence. Phys. Rev. Lett. 110, 084502.CrossRefGoogle ScholarPubMed
Alexakis, A., Bigot, B., Politano, H. & Galtier, S. 2007 Anisotropic fluxes and nonlocal interactions in magnetohydrodynamic turbulence. Phys. Rev. E 76 (5), 056313.CrossRefGoogle ScholarPubMed
Andrés, N., Sahraoui, F., Galtier, S., Hadid, L.Z., Ferrand, R. & Huang, S.Y. 2019 Energy cascade rate measured in a collisionless space plasma with MMS data and compressible Hall magnetohydrodynamic turbulence theory. Phys. Rev. Lett. 123, 245101.CrossRefGoogle Scholar
Antonia, R.A., Ould-Rouis, M., Anselmet, F. & Zhu, Y. 1997 Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332, 395409.CrossRefGoogle Scholar
Bandyopadhyay, R., et al. 2020 In situ observation of Hall magnetohydrodynamic cascade in space plasma. Phys. Rev. Lett. 124, 225101.CrossRefGoogle ScholarPubMed
Banerjee, S., Hadid, L.Z., Sahraoui, F. & Galtier, S. 2016 Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind. Astrophys. J. Lett. 829 (2), L27.CrossRefGoogle Scholar
Beresnyak, A. & Lazarian, A. 2009 Comparison of spectral slopes of magnetohydrodynamic and hydrodynamic turbulence and measurements of alignment effects. Astrophys. J. 702 (2), 11901198.CrossRefGoogle Scholar
Biskamp, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Biskamp, D. & Müller, W.C. 2000 Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence. Phys. Plasmas 7 (12), 48894900.CrossRefGoogle Scholar
Briard, A. & Gomez, T. 2018 The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity. J. Plasma Phys. 84 (1), 905840110.CrossRefGoogle Scholar
Bruno, R. & Carbone, V. 2013 The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10 (1), 2.CrossRefGoogle Scholar
Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A. & Bruno, R. 2009 Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103, 061102.CrossRefGoogle ScholarPubMed
Coleman, J.R. & Paul, J. 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371388.CrossRefGoogle Scholar
De Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.CrossRefGoogle Scholar
Ferrand, R., Galtier, S., Sahraoui, F., Meyrand, R., Andrés, N. & Banerjee, S. 2019 On exact laws in incompressible Hall magnetohydrodynamic turbulence. Astrophys. J. 881 (1), 50.CrossRefGoogle Scholar
Ferrand, R., Sahraoui, F., Galtier, S., Andrés, N., Mininni, P. & Dmitruk, P. 2022 An in-depth numerical study of exact laws for compressible Hall magnetohydrodynamic turbulence. Astrophys. J. 927 (2), 205.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S.S., Wirth, A. & Zhu, J.Z. 2008 Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101 (14), 144501.CrossRefGoogle ScholarPubMed
Galtier, S. 2009 Exact vectorial law for axisymmetric magnetohydrodynamics turbulence. Astrophys. J. 704 (2), 13711384.CrossRefGoogle Scholar
Gogoberidze, G., Perri, S. & Carbone, V. 2013 The Yaglom law in the expanding solar wind. Astrophys. J. 769 (2), 111.CrossRefGoogle Scholar
Hadid, L.Z., Sahraoui, F. & Galtier, S. 2017 Energy cascade rate in compressible fast and slow solar wind turbulence. Astrophys. J. 838 (1), 9.CrossRefGoogle Scholar
Hellinger, P., Trávnıček, P.M., Štverák, Š., Matteini, L. & Velli, M. 2013 Proton thermal energetics in the solar wind: Helios reloaded. J. Geophys. Res. 118, 13511365.CrossRefGoogle Scholar
Hellinger, P., Verdini, A., Landi, S., Franci, L. & Matteini, L. 2018 von Kármán–Howarth equation for Hall magnetohydrodynamics: hybrid simulations. Astrophys. J. Lett. 857 (2), L19.CrossRefGoogle Scholar
Horbury, T.S., Forman, M. & Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.CrossRefGoogle ScholarPubMed
Hossain, M., Gray, P.C., Pontius, D.H. Jr., Matthaeus, W.H. & Oughton, S. 1995 Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7 (11), 28862904.CrossRefGoogle Scholar
Jokipii, J.R. & Hollweg, J.V. 1970 Interplanetary scintillations and the structure of solar-wind fluctuations. Astrophys. J. 160, 745753.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in the locally isotropic turbulence. C.R. Acad. Sci. URSS 32, 16, [Reprinted in Proc. R. Soc. London, Ser. A 434, 15–17 (1991)].Google Scholar
Kolmogorov, A.N. 1941 b Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305, [Reprinted in Proc. R. Soc. London, Ser. A 434, 9–13 (1991)].Google Scholar
Kraichnan, R.H. 1971 Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech. 47 (3), 525535.CrossRefGoogle Scholar
Kritsuk, A.G., Ustyugov, S.D., Norman, M.L. & Padoan, P. 2009 Simulating supersonic turbulence in magnetized molecular clouds. In Journal of Physics: Conference Series, vol. 180, p. 012020. IOP Publishing.CrossRefGoogle Scholar
MacBride, B.T., Smith, C.W. & Forman, M.A. 2008 The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys. J. 679 (2), 16441660.CrossRefGoogle Scholar
Matthaeus, W.H., et al. 2019 [plasma 2020 decadal] the essential role of multi-point measurements in turbulence investigations: the solar wind beyond single scale and beyond the Taylor hypothesis. arXiv:1903.06890.Google Scholar
Matthaeus, W.H., Ghosh, S., Oughton, S. & Roberts, D.A. 1996 Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101 (A4), 76197629.CrossRefGoogle Scholar
Matthaeus, W.H. & Goldstein, M.L. 1982 Measurement of the rugged invariants of magnetohydro- dynamic turbulence in the solar wind. J. Geophys. Res. 87 (A8), 60116028.CrossRefGoogle Scholar
Milano, L.J., Matthaeus, W.H., Dmitruk, P. & Montgomery, D.C. 2001 Local anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Plasmas 8 (6), 26732681.CrossRefGoogle Scholar
Monin, A.S., Yaglom, A.M. 1975 Statistical Fluid Mechanics, Vol. 2. MIT Press.Google Scholar
Nie, Q. & Tanveer, S. 1999 A note on third-order structure functions in turbulence. Proc. R. Soc. Lond. A 455 (1985), 16151635.CrossRefGoogle Scholar
Osman, K.T., Wan, M., Matthaeus, W.H., Weygand, J.M. & Dasso, S. 2011 Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data. Phys. Rev. Lett. 107, 165001.CrossRefGoogle ScholarPubMed
Oughton, S. & Matthaeus, W.H. 2020 Critical balance and the physics of magnetohydrodynamic turbulence. Astrophys. J. 897 (1), 37.CrossRefGoogle Scholar
Oughton, S., Matthaeus, W.H., Wan, M. & Osman, K.T. 2015 Anisotropy in solar wind plasma turbulence. Phil. Trans. R. Soc. A 373 (2041), 20140152.CrossRefGoogle ScholarPubMed
Parker, E.N. 1979 Cosmical Magnetic Fields: Their Origin and Activity. Oxford University Press.Google Scholar
Podesta, J.J. 2008 Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence. J. Fluid Mech. 609, 171194.CrossRefGoogle Scholar
Podesta, J.J., Forman, M.A. & Smith, C.W. 2007 Anisotropic form of third-order moments and relationship to the cascade rate in axisymmetric magnetohydrodynamic turbulence. Phys. Plasmas 14 (9), 092305.CrossRefGoogle Scholar
Politano, H. & Pouquet, A. 1998 von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57 (1), R21.CrossRefGoogle Scholar
Shebalin, J.V., Matthaeus, W.H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29 (3), 525547.CrossRefGoogle Scholar
Spence, H.E. 2019 HelioSwarm: unlocking the multiscale mysteries of weakly-collisional magnetized plasma turbulence and ion heating. In AGU Fall Meeting Abstracts, vol. 2019, pp. SH11B–04.Google Scholar
Spyksma, K., Magcalas, M. & Campbell, N. 2012 Quantifying effects of hyperviscosity on isotropic turbulence. Phys. Fluids 24 (12), 125102.CrossRefGoogle Scholar
Stawarz, J.E., Smith, C.W., Vasquez, B.J., Forman, M.A. & MacBride, B.T. 2009 The turbulent cascade and proton heating in the solar wind at 1 AU. Astrophys. J. 697 (2), 11191127.CrossRefGoogle Scholar
Stawarz, J.E., Smith, C.W., Vasquez, B.J., Forman, M.A. & MacBride, B.T. 2010 The turbulent cascade for high cross-helicity states at 1 AU. Astrophys. J. 713 (2), 920934.CrossRefGoogle Scholar
Stawarz, J.E., Vasquez, B.J., Smith, C.W., Forman, M.A. & Klewicki, J. 2011 Third moments and the role of anisotropy from velocity shear in the solar wind. Astrophys. J. 736 (1), 44.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.CrossRefGoogle Scholar
Taylor, M.A., Kurien, S. & Eyink, G.L. 2003 Recovering isotropic statistics in turbulence simulations: the Kolmogorov 4/5th law. Phys. Rev. E 68, 026310.CrossRefGoogle ScholarPubMed
Tu, C. & Marsch, E. 1995 MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1–2), 1210.CrossRefGoogle Scholar
Verdini, A., Grappin, R., Hellinger, P., Landi, S. & Müller, W.C. 2015 Anisotropy of third-order structure functions in MHD turbulence. Astrophys. J. 804 (2), 119.CrossRefGoogle Scholar
Wan, M., Servidio, S., Oughton, S. & Matthaeus, W.H. 2009 The third-order law for increments in magnetohydrodynamic turbulence with constant shear. Phys. Plasmas 16 (9), 090703.CrossRefGoogle Scholar
Wan, M., Servidio, S., Oughton, S. & Matthaeus, W.H. 2010 The third-order law for magnetohydrodynamic turbulence with shear: numerical investigation. Phys. Plasmas 17 (5), 052307.CrossRefGoogle Scholar
Wang, Y., Chhiber, R., Adhikari, S., Yang, Y., Bandyopadhyay, R., Shay, M.A., Oughton, S., Matthaeus, W.H. & Cuesta, M.E. 2022 Strategies for determining the cascade rate in MHD turbulence: isotropy, anisotropy, and spacecraft sampling. Astrophys. J. 937 (2), 76.CrossRefGoogle Scholar
Yang, Y., Linkmann, M., Biferale, L. & Wan, M. 2021 Effects of forcing mechanisms on the multiscale properties of magnetohydrodynamics. Astrophys. J. 909 (2), 175.CrossRefGoogle Scholar
Yang, Y., Matthaeus, W.H., Shi, Y., Wan, M. & Chen, S. 2017 Compressibility effect on coherent structures, energy transfer, and scaling in magnetohydrodynamic turbulence. Phys. Fluids 29 (3), 035105.CrossRefGoogle Scholar
Yokoyama, N. & Takaoka, M. 2021 Energy-flux vector in anisotropic turbulence: application to rotating turbulence. J. Fluid Mech. 908, A17.CrossRefGoogle Scholar
Yoshimatsu, K. 2012 Examination of the four-fifths law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box. Phys. Rev. E 85 (6), 066313.CrossRefGoogle Scholar
Zhai, X.M. & Yeung, P.K. 2018 Evolution of anisotropy in direct numerical simulations of MHD turbulence in a strong magnetic field on elongated periodic domains. Phys. Rev. Fluids 3 (8), 084602.CrossRefGoogle Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar