Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-13T20:15:11.652Z Has data issue: false hasContentIssue false

Energy pathways for large- and small-scale magnetic field generation in convection-driven plane layer dynamos

Published online by Cambridge University Press:  18 March 2025

Souvik Naskar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
Anikesh Pal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India
*
Corresponding author: Souvik Naskar, [email protected]

Abstract

We use direct numerical simulations to investigate the energy pathways between the velocity and the magnetic fields in a rotating plane layer dynamo driven by Rayleigh–Bénard convection. The kinetic and magnetic energies are divided into mean and turbulent components to study the production, transport and dissipation in large- and small-scale dynamos. This energy balance-based characterisation reveals distinct mechanisms for large- and small-scale magnetic field generation in dynamos, depending on the nature of the velocity field and the conditions imposed at the boundaries. The efficiency of a dynamo in converting the kinetic energy to magnetic energy, apart from the energy redistribution inside the domain, is found to depend on the kinematic and magnetic boundary conditions. In a small-scale dynamo with a turbulent velocity field, the turbulent kinetic energy converts to turbulent magnetic energy via small-scale magnetic field stretching. This term also represents the amplification of the turbulent magnetic energy due to work done by stretching the small-scale magnetic field lines owing to fluctuating velocity gradients. The stretching of the large-scale magnetic field plays a significant role in this energy conversion in a large-scale turbulent dynamo, leading to a broad range of energetic scales in the magnetic field compared with a small-scale dynamo. This large-scale magnetic field stretching becomes the dominant mechanism of magnetic energy generation in a weakly nonlinear dynamo. We also find that, in the weakly nonlinear dynamo, an upscale energy transfer from the small-scale magnetic field to the large-scale magnetic field occurs owing to the presence of a gradient of the mean magnetic field.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bakhuis, D., Ostilla-Mónico, R., Van Der Poel, E.P., Erwin, P., Verzicco, R. & Lohse, D. 2018 Mixed insulating and conducting thermal boundary conditions in Rayleigh–Bénard convection. J. Fluid Mech. 835, 491511.CrossRefGoogle Scholar
Brackbill, J.U. & Barnes, D.C. 1980 The effect of nonzero B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426430.CrossRefGoogle Scholar
Brandenburg, A., Jennings, R.L., Nordlund, Å., Rieutord, M., Stein, R.F. & Tuominen, I. 1996 Magnetic structures in a dynamo simulation. J. Fluid Mech. 306, 325352.CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417 (1-4), 1209.CrossRefGoogle Scholar
Brucker, K.A. & Sarkar, S. 2010 A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech. 652, 373404.CrossRefGoogle Scholar
Bushby, P.J., Käpylä, P.J., Masada, Y., Brandenburg, A., Favier, B., Guervilly, C. & Käpylä, M.J. 2018 Large-scale dynamos in rapidly rotating plane layer convection. Astron. Astrophys. 612, A97.CrossRefGoogle Scholar
Calkins, M.A. 2018 Quasi-geostrophic dynamo theory. Phys. Earth Planet. Inter. 276, 182189.CrossRefGoogle Scholar
Calkins, M.A., Julien, K., Tobias, S.M. & Aurnou, J.M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D.W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Childress, S. & Soward, A.M. 1972 Convection-driven hydromagnetic dynamo. Phys. Rev. Lett. 29 (13), 837839.CrossRefGoogle Scholar
Fautrelle, Y. & Childress, S. 1982 Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn. 22 (3-4), 235279.CrossRefGoogle Scholar
Favier, B. & Bushby, P.J. 2013 On the problem of large-scale magnetic field generation in rotating compressible convection. J. Fluid Mech. 723, 529555.CrossRefGoogle Scholar
Favier, B., Silvers, L.J. & Proctor, M.R.E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.CrossRefGoogle Scholar
Gayen, B., Hughes, G.O. & Griffiths, R.W. 2013 Completing the mechanical energy pathways in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 111 (12), 124301.CrossRefGoogle ScholarPubMed
Guervilly, C., Hughes, D.W. & Jones, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
Guervilly, C., Hughes, D.W. & Jones, C.A. 2015 Generation of magnetic fields by large-scale vortices in rotating convection. Phys. Rev. E 91 (4), 041001.CrossRefGoogle ScholarPubMed
Guervilly, C., Hughes, D.W. & Jones, C.A. 2017 Large-scale-vortex dynamos in planar rotating convection. J. Fluid Mech. 815, 333360.CrossRefGoogle Scholar
Guzmán, A.J.A., Madonia, M., Cheng, J.S., Ostilla-Mónico, R., Clercx, H.J.H. & Kunnen, R.P.J. 2020 Competition between ekman plumes and vortex condensates in rapidly rotating thermal convection. Phys. Rev. Lett. 125 (21), 214501.CrossRefGoogle Scholar
Hughes, D.W. 2018 Mean field electrodynamics: triumphs and tribulations. J. Plasma Phys. 84 (4), 735840407.CrossRefGoogle Scholar
Hughes, D.W. & Proctor, M.R.E. 2009 Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102 (4), 044501.CrossRefGoogle ScholarPubMed
Hughes, D.W. & Proctor, M.R.E. 2013 The effect of velocity shear on dynamo action due to rotating convection. J. Fluid Mech. 717, 395416.CrossRefGoogle Scholar
Käpylä, P.J., Korpi, M.J. & Brandenburg, A. 2009 Alpha effect and turbulent diffusion from convection. Astron. Astrophys. 500 (2), 633646.CrossRefGoogle Scholar
Kerr, R.M. 2001 Energy budget in Rayleigh–Bénard convection. Phys. Rev. Lett. 87 (24), 244502–1–244502–4.CrossRefGoogle ScholarPubMed
Kunnen, R.P.J., Geurts, B.J. & Clercx, H.J.H. 2009 Turbulence statistics and energy budget in rotating Rayleigh–Bénard convection. Eur. J. Mech. B Fluids 28 (4), 578589.CrossRefGoogle Scholar
Lumley, L.J. & Tennekes, H. 1997 A Fisrt Course in Turbulence. The MIT Press.Google Scholar
Meneguzzi, M. & Pouquet, A. 1989 Turbulent dynamos driven by convection. J. Fluid Mech. 205, 297318.CrossRefGoogle Scholar
Moffatt, K. & Dormy, E. 2019 Self-Exciting Fluid Dynamos. Cambridge University Press.CrossRefGoogle Scholar
Naskar, S. & Pal, A. 2022 a Direct numerical simulations of optimal thermal convection in rotating plane layer dynamos. J. Fluid Mech. 942, A37.CrossRefGoogle Scholar
Naskar, S. & Pal, A. 2022 b Effects of kinematic and magnetic boundary conditions on the dynamics of convection-driven plane layer dynamos. J. Fluid Mech. 951, A7.CrossRefGoogle Scholar
Pal, A. 2020 Deep learning emulation of subgrid-scale processes in turbulent shear flows. Geophys. Res. Lett. 47 (12), e2020GL087005.CrossRefGoogle Scholar
Pal, A. & Chalamalla, V.K. 2020 Evolution of plumes and turbulent dynamics in deep-ocean convection. J. Fluid Mech. 889, A35.CrossRefGoogle Scholar
Pal, A. & Sarkar, S. 2015 Effect of external turbulence on the evolution of a wake in stratified and unstratified environments. J. Fluid Mech. 772, 361385.CrossRefGoogle Scholar
Pal, A., de Stadler, M.B. & Sarkar, S. 2013 The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence. Phys. Fluids 25 (9), 095106.CrossRefGoogle Scholar
Petschel, K., Stellmach, S., Wilczek, M., Lülff, J. & Hansen, U. 2015 Kinetic energy transport in Rayleigh–Bénard convection. J. Fluid Mech. 773, 395417.CrossRefGoogle Scholar
Pham, H.T., Sarkar, S. & Brucker, K.A. 2009 Dynamics of a stratified shear layer above a region of uniform stratification. J. Fluid Mech. 630, 191223.CrossRefGoogle Scholar
Singh, N. & Pal, A. 2023 The onset and saturation of the faraday instability in miscible fluids in a rotating environment. J. Fluid Mech. 973, A6.CrossRefGoogle Scholar
Singh, N. & Pal, A. 2024 a Evolution of the rotating Rayleigh–Taylor instability under the influence of magnetic fields. arXiv preprint arXiv: 2406.00514.Google Scholar
Singh, N. & Pal, A. 2024 b Quantifying the turbulent mixing driven by the faraday instability in rotating miscible fluids. Phys. Fluids 36 (2), 024116.CrossRefGoogle Scholar
Soward, A.M. 1974 A convection-driven dynamo i. the weak field case. Phil. Trans. R. Soc. Lond. A 275 (1256), 611646.Google Scholar
Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70 (5), 056312.CrossRefGoogle Scholar
Tilgner, A. 2012 Transitions in rapidly rotating convection driven dynamos. Phys. Rev. Lett. 109 (24), 248501.CrossRefGoogle ScholarPubMed
Tobias, S.M. 2021 The turbulent dynamo. J. Fluid Mech. 912, P1.CrossRefGoogle ScholarPubMed
Vogt, T., Horn, S. & Aurnou, J.M. 2021 Oscillatory thermal–inertial flows in liquid metal rotating convection. J. Fluid Mech. 911, A5.CrossRefGoogle Scholar
Yan, M. & Calkins, M.A. 2022 a Asymptotic behaviour of rotating convection-driven dynamos in the plane layer geometry. J. Fluid Mech. 951, A24.CrossRefGoogle Scholar
Yan, M. & Calkins, M.A. 2022 b Strong large scale magnetic fields in rotating convection-driven dynamos: the important role of magnetic diffusion. Phys. Rev. Res. 4 (1), L012026.CrossRefGoogle Scholar