Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:06:20.480Z Has data issue: false hasContentIssue false

Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence

Published online by Cambridge University Press:  06 March 2012

Saba Almalkie*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Drive, Amherst, MA 01003-9284, USA
Stephen M. de Bruyn Kops
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Drive, Amherst, MA 01003-9284, USA
*
Email address for correspondence: [email protected]

Abstract

High-resolution direct numerical simulations of isotropic homogeneous turbulence are used to understand the differences between the effects of spatial intermittency on the energy dissipation rate and on surrogates for the dissipation rate that are based on measurements of a subset of the strain rate tensor. In particular, the one-dimensional longitudinal and transverse surrogates, as well as a surrogate based on the asymmetric part of the strain rate tensor, are considered. The instantaneous surrogates are studied locally, locally averaged in space and conditionally averaged to see what statistics of the dissipation rate might accurately be inferred given measurements of the surrogates. The simulations with the Reynolds numbers based on the Taylor microscale of 102–235 are highly resolved for accurate evaluation of higher-order statistics. The probability densities of the local and locally averaged surrogates are significantly different from the corresponding statistics for the dissipation rate itself. All of the surrogates are more intermittent than the dissipation rate, the transverse surrogate is more intermittent than the longitudinal and these trends are still prominent even when the fields are spatially averaged at length scales close to the integral length scale. As a consequence, the intermittency exponent computed from the moments of the locally averaged longitudinal and transverse surrogates is approximately 1.5 and 2.2 times higher, respectively, than that computed by the same method from the dissipation rate field. In addition, while different methods of computing intermittency exponent from the dissipation rate field yield the same result, different methods applied to a surrogate are inconsistent.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benzi, R., Biferale, L., Fisher, R., Lamb, D. Q. & Toschi, F. 2010 Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J. Fluid Mech. 653, 221244.CrossRefGoogle Scholar
2. Benzi, R., Biferale, L., Paladin, G., Vulpiani, A. & Vergassola, M. 1991 Multifractality in the statistics of the velocity-gradients in turbulence. Phys. Rev. Lett. 67 (17), 22992302.CrossRefGoogle ScholarPubMed
3. Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48 (1), R29R32.CrossRefGoogle ScholarPubMed
4. Bershadskii, A., Kit, E. & Tsinober, A. 1993 On universality of geometrical invariants in turbulence – Experimental results. Phys. Fluids 5 (7), 15231525.CrossRefGoogle Scholar
5. Bershadskii, A. & Tsinober, A. 1993 Local anisotropic effects on multifractality of turbulence. Phys. Rev. E 48 (1), 282287.CrossRefGoogle ScholarPubMed
6. Biferale, L. 2008 A note on the fluctuation of dissipative scale in turbulence. Phys. Fluids 20 (3), 031703.CrossRefGoogle Scholar
7. Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414 (2–3), 43164.CrossRefGoogle Scholar
8. Boratav, O. N. & Pelz, R. B. 1997 Structures and structure functions in the inertial range of turbulence. Phys. Fluids 9 (5), 14001415.CrossRefGoogle Scholar
9. de Bruyn Kops, S. M. & Riley, J. J. 1998 Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10 (9), 21252127.CrossRefGoogle Scholar
10. Chen, S., Doolen, G. D., Kraichnan, R. H. & She, Z. 1993 On statistical correlation between velocity increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids A 5 (2), 458463.CrossRefGoogle Scholar
11. Chen, S. Y., Doolen, G. D., Kraichnan, R. H. & Wang, L. P. 1995 Is the Kolmogorov refined similarity relation dynamic or kinematic? Phys. Rev. Lett. 74 (10), 17551758.CrossRefGoogle ScholarPubMed
12. Chen, S., Sreenivasan, K. R., Nelkin, M. & Cao, N. Z. 1997a Refined similarity hypothesis for transverse structure functions in fluid turbulence. Phys. Rev. Lett. 79 (12), 22532256.CrossRefGoogle Scholar
13. Chen, S. Y., Sreenivasan, K. R. & Nelkin, M. 1997b Inertial range scalings of dissipation and enstrophy in isotropic turbulence. Phys. Rev. Lett. 79 (7), 12531256.CrossRefGoogle Scholar
14. Cleve, J., Greiner, M., Pearson, B. R. & Sreenivasan, K. R. 2004 Intermittency exponent of the turbulent energy cascade. Phys. Rev. E 69, 066316.CrossRefGoogle ScholarPubMed
15. Cleve, J., Greiner, M. & Sreenivasan, K. R. 2003 On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence. Europhys. Lett. 61, 756761.CrossRefGoogle Scholar
16. Dhruva, B., Tsuji, Y. & Sreenivasan, K. R. 1997 Transverse structure functions in high-Reynolds-number turbulence. Phys. Rev. E 56 (5, Part a), R4928R4930.CrossRefGoogle Scholar
17. Dobler, W., Haugen, N. E. L., Yousef, T. A. & Brandenburg, A. 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68 (2), 026304.CrossRefGoogle ScholarPubMed
18. Donzis, D. A. & Sreenivasan, K. R. 2010 The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech. 657, 171188.CrossRefGoogle Scholar
19. Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.CrossRefGoogle Scholar
20. Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
21. Gibson, C. H., Stegen, G. R. & McConnell, S. 1970 Measurements of the universal constant in Kolmogorov’s third hypothesis for high Reynolds number turbulence. Phys. Fluids 13, 24482451.CrossRefGoogle Scholar
22. Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3), 10651081.CrossRefGoogle Scholar
23. Grossmann, S., Lohse, D. & Reeh, A. 1997 Different intermittency for longitudinal and transversal turbulent fluctuations. Phys. Fluids 9 (12), 38173825.CrossRefGoogle Scholar
24. Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007a Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J. Fluid Mech. 589, 83102.CrossRefGoogle Scholar
25. Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007b Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J. Fluid Mech. 589, 103123.CrossRefGoogle Scholar
26. Hamlington, P. E., Krasnov, D., Boeck, T. & Schumacher, J. 2012 Statistics of the energy dissipation rate and local enstrophy in turbulent channel flow. Physica D 241, 169177.CrossRefGoogle Scholar
27. Hao, Z., Zhou, T., Zhou, Y. & Mi, J. 2008 Reynolds number dependence of the inertial range scaling of energy dissipation rate and enstrophy in a cylinder wake. Exp. Fluids 44 (2), 279289.CrossRefGoogle Scholar
28. Hierro, J. & Dopazo, C. 2003 Fourth-order statistical moments of the velocity gradient tensor in homogeneous, isotropic turbulence. Phys. Fluids 15 (11), 34343442.CrossRefGoogle Scholar
29. Hosokawa, I. 1995 A paradox of the 1D surrogate of dissipation rate in isotropic turbulence. J. Phys. Soc. Japan 64 (9), 31413144.CrossRefGoogle Scholar
30. Hosokawa, I., Oide, S. & Yamamoto, K. 1996 Isotropic turbulence: important differences between true dissipation rate and its one-dimensional surrogate. Phys. Rev. Lett. 77 (22), 45484551.CrossRefGoogle ScholarPubMed
31. Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
32. Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.CrossRefGoogle Scholar
33. Jang, Y. & de Bruyn Kops, S. M. 2007 Pseudo-spectral numerical simulation of miscible fluids with a high density ratio. Comput. Fluids 36, 238247.CrossRefGoogle Scholar
34. Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.CrossRefGoogle Scholar
35. Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
36. Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
37. Kraichnan, R. H. 1974 On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305330.CrossRefGoogle Scholar
38. Lohse, D. & Mullergroeling, A. 1995 Bottleneck effects in turbulence – scaling phenomena in R-space versus P-space. Phys. Rev. Lett. 74 (10), 17471750.CrossRefGoogle Scholar
39. Mandelbrot, B. B. 1974 Intermittent turbulence in self-similar cascades – divergence of high moments and dimension of carrier. J. Fluid Mech. 62, 331358.CrossRefGoogle Scholar
40. Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.CrossRefGoogle Scholar
41. Miller, P. L. & Dimotakis, P. E. 1991 Stochastic geometric-properties of scalar interfaces in turbulent jets. Phys. Fluids 3 (1), 168177.CrossRefGoogle Scholar
42. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. The MIT Press.Google Scholar
43. Novikov, E. A. & Stewart, R. W. 1964 The intermittency of turbulence and the spectrum of energy dissipation. Izv. Akad. Nauk. SSSR Ser. Geoffiz 3, 408413.Google Scholar
44. Obukhov, A. M. 1941a Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.Google Scholar
45. Obukhov, A. M. 1941b Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk. SSSR Ser. Geogr. i. Geofiz 5, 453466.Google Scholar
46. Obukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 7781.CrossRefGoogle Scholar
47. Overholt, M. R. & Pope, S. B. 1998 A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids 27, 1128.CrossRefGoogle Scholar
48. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
49. Pope, S. B. & Chen, Y. L. 1990 The velocity-dissipation probability density-function model for turbulent flows. Phys. Fluids 2 (8), 14371449.CrossRefGoogle Scholar
50. Praskovsky, A. & Oncley, S. 1997 Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows. Fluid Dyn. Res. 21 (5), 331358.CrossRefGoogle Scholar
51. Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y. & Marsan, D. 1997 Multifractal cascade dynamics and turbulent intermittency. Fractals 5 (3), 427471.CrossRefGoogle Scholar
52. Schumacher, J. 2007 Sub-Kolmogorov-scale fluctuations in fluid turbulence. Europhys. Lett. 80 (5), 54001.CrossRefGoogle Scholar
53. Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89.CrossRefGoogle Scholar
54. Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. 2005 Very fine structures in scalar mixing. J. Fluid Mech. 531, 113122.CrossRefGoogle Scholar
55. Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids 14 (1), 370381.CrossRefGoogle Scholar
56. Siggia, E. D. 1981 Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids 24, 19341936.CrossRefGoogle Scholar
57. Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
58. Sreenivasan, K. R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids 5, 512.CrossRefGoogle Scholar
59. Stolovitzky, G., Kailasnath, P. & Sreenivasan, K. R. 1992 Kolmogorov refined similarity hypotheses. Phys. Rev. Lett. 69 (8), 11781181.CrossRefGoogle ScholarPubMed
60. Stolovitzky, G. & Sreenivasan, K. R. 1994 Kolmogorov refined similarity hypotheses for turbulence and general stochastic-processes. Rev. Mod. Phys. 66 (1), 229240.CrossRefGoogle Scholar
61. Sykora, S. 2007 K-space images of -dimensional spheres and generalized sinc functions. Stan’s Library Volume II, doi:10.3247/SL2Math07.002.CrossRefGoogle Scholar
62. Thoroddsen, S. T. 1995 Reevaluation of the experimental support for the Kolmogorov refined similarity hypothesis. Phys. Fluids 7 (4), 691693.CrossRefGoogle Scholar
63. Vainshtein, S. I. 2000 Dissipation field asymmetry and intermittency in fully developed turbulence. Phys. Rev. E 61 (5), 52285240.CrossRefGoogle ScholarPubMed
64. Wan, M., Oughton, S., Servidio, S. & Matthaeus, W. H. 2010 On the accuracy of simulations of turbulence. Phys. Plasmas 17 (8), 082308.CrossRefGoogle Scholar
65. Wang, L. P., Chen, S. Y., Brasseur, J. G. & Wyngaard, J. C. 1996 Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113156.CrossRefGoogle Scholar
66. Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.CrossRefGoogle Scholar
67. Yakhot, V. 2006 Probability densities in strong turbulence. Physica D 215 (2), 166174.CrossRefGoogle Scholar
68. Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.CrossRefGoogle Scholar
69. Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2005 High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17, 081703.CrossRefGoogle Scholar
70. Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006a Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 114.CrossRefGoogle Scholar
71. Yeung, P. K., Pope, S. B. & Sawford, B. L. 2006b Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul. 7, 112.CrossRefGoogle Scholar
72. Zhou, T. & Antonia, R. A. 2000a Approximations for turbulent energy and temperature variance dissipation rates in grid turbulence. Phys. Fluids 12 (2), 335344.CrossRefGoogle Scholar
73. Zhou, T. & Antonia, R. A. 2000b Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.CrossRefGoogle Scholar
74. Zhou, T., Hao, Z., Chua, L. P. & Zhou, Y. 2006 Comparisons between different approximations to energy dissipation rate in a self-preserving far wake. Phys. Rev. E 74 (5, Part 2), 056308.CrossRefGoogle Scholar