Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T14:33:09.858Z Has data issue: false hasContentIssue false

Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection

Published online by Cambridge University Press:  19 August 2019

Xin Chen
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, China
Shi-Di Huang
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
Ke-Qing Xia
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
Heng-Dong Xi*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, China
*
Email address for correspondence: [email protected]

Abstract

We present an experimental study of the reversal of the large-scale circulation (LSC) in quasi-two-dimensional turbulent Rayleigh–Bénard convection. It is found that there exists a transition in the Rayleigh number ($Ra$) dependence of the reversal rate $f$ with two distinct scalings: for $Ra$ less than a transitional value $Ra_{t}$, the non-dimensionalized reversal rate $ft_{E}\sim Ra^{-1.09}$; however, for higher $Ra$ the scaling changes to $ft_{E}\sim Ra^{-3.06}$, where $t_{E}$ is the turnover time of the LSC. Flow visualization shows that this regime transition originates from a change in flow topology from a single-roll state to a new, less stable, abnormal single-roll state with substructures inside the single roll. The emergence of the substructures inside the LSC lowers the energy barrier for the flow reversals to occur and leads to a slower decay of $f$ with $Ra$. Detailed analysis reveals that, although it is the corner rolls that trigger the reversal event, the probability for the occurrence of reversals mainly depends on the stability of the LSC. This is supported by a model we proposed to predict the critical condition for the transition, which agrees well with the experimental results.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503Google Scholar
Araujo, F. F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95 (8), 084502.10.1103/PhysRevLett.95.084502Google Scholar
Assaf, M., Angheluta, L. & Goldenfeld, N. 2011 Rare fluctuations and large-scale circulation cessations in turbulent convection. Phys. Rev. Lett. 107 (4), 044502.10.1103/PhysRevLett.107.044502Google Scholar
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95 (2), 024502.10.1103/PhysRevLett.95.024502Google Scholar
Bershadskii, A. 2004 Clusterization of the solar flares peaks. Physica A 331 (1-2), 297299.10.1016/j.physa.2003.07.004Google Scholar
Biggin, A. J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T. H., van der Meer, D. G. & van Hinsbergen, D. J. J. 2012 Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geosci. 5, 526533.10.1038/ngeo1521Google Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.10.1103/PhysRevLett.98.134501Google Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech.: Theory Exp. 2007 (10), P10005.10.1088/1742-5468/2007/10/P10005Google Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95 (8), 084503.10.1103/PhysRevLett.95.084503Google Scholar
Chandra, M. & Verma, M. K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83, 067303.Google Scholar
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.10.1103/PhysRevLett.110.114503Google Scholar
Chilla, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.10.1140/epje/i2012-12058-1Google Scholar
Chong, K.-L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3 (1), 013501.10.1103/PhysRevFluids.3.013501Google Scholar
van Doorn, E., Dhruva, B., Sreenivasan, K. R. & Cassella, V. 2000 Statistics of wind direction and its increments. Phys. Fluids 12 (6), 15291534.10.1063/1.870401Google Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.10.1103/PhysRevLett.92.194502Google Scholar
Gallet, B., Herault, J., Laroche, C., Pétrélis, F. & Fauve, S. 2012 Reversals of a large-scale field generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106, 468492.10.1080/03091929.2011.648629Google Scholar
Glatzmaier, G. A., Coe, R. S., Hongre, L. & Roberts, P. H. 1999 The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401 (6756), 885890.10.1038/44776Google Scholar
Horstmann, G. M., Schiepel, D. & Wagner, C. 2018 Experimental study of the global flow-state transformation in a rectangular Rayleigh–Bénard sample. Intl J. Heat Mass Tranfer 126, 13331346.10.1016/j.ijheatmasstransfer.2018.05.097Google Scholar
Huang, S.-D., Wang, F., Xi, H.-D. & Xia, K.-Q. 2015 Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection. Phys. Rev. Lett. 115 (15), 154502.10.1103/PhysRevLett.115.154502Google Scholar
Huang, S.-D. & Xia, K.-Q. 2016 Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection. J. Fluid Mech. 794, 639654.10.1017/jfm.2016.181Google Scholar
Liu, B. & Zhang, J. 2008 Self-induced cyclic reorganization of free bodies through thermal convection. Phys. Rev. Lett. 100 (24), 244501.10.1103/PhysRevLett.100.244501Google Scholar
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.10.1103/PhysRevLett.90.034502Google Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.10.1146/annurev.fluid.010908.165152Google Scholar
Miesch, M. S. & Toomre, J. 2009 Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech. 41 (1), 317345.10.1146/annurev.fluid.010908.165215Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.10.1017/jfm.2015.433Google Scholar
Pétrélis, F., Fauve, S., Dormy, E. & Valet, J. P. 2009 Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503.10.1103/PhysRevLett.102.144503Google Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.10.1017/jfm.2015.15Google Scholar
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.Google Scholar
Sugiyama, K., Ni, R., Stevens, R. J., Chan, T.-S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.10.1103/PhysRevLett.105.034503Google Scholar
Vasilev, A. Y. & Frick, P. G. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. JETP Lett. 93 (6), 330334.10.1134/S0021364011060117Google Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.10.1063/1.4819141Google Scholar
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018a Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.10.1017/jfm.2018.451Google Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018b Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), eaat7480.10.1126/sciadv.aat7480Google Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.10.1017/S0022112004008079Google Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75 (6 Pt 2), 066307.Google Scholar
Xi, H.-D., Zhang, Y.-B., Hao, J.-T. & Xia, K.-Q. 2016 Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 3151.10.1017/jfm.2016.572Google Scholar
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503.10.1103/PhysRevLett.102.044503Google Scholar
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3 (5), 052001.10.1063/2.1305201Google Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.Google Scholar