Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T12:40:17.005Z Has data issue: false hasContentIssue false

Emergence and evolution of triangular vortices

Published online by Cambridge University Press:  26 April 2006

G. F. Carnevale
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
R. C. Kloosterziel
Affiliation:
School of Ocean & Earth Science & Technology, University of Hawaii, Honolulu, HI 96822, USA

Abstract

Laboratory observations and numerical simulations reveal that, in addition to monopoles, dipoles and tripoles, yet another stable coherent vortex may emerge from unstable isolated circular vortices. This new vortex is the finite-amplitude result of the growth of an azimuthal wavenumber-3 perturbation. It consists of a triangular core of single-signed vorticity surrounded by three semicircular satellites of oppositely signed vorticity. The stability of this triangular vortex is analysed through a series of high-resolution numerical simulations and by an investigation of point-vortex models. This new compound vortex rotates about its centre and is stable to small perturbations. If perturbed strongly enough, it undergoes an instability in which two of the outer satellites merge, resulting in the formation of an axisymmetric tripole, which subsequently breaks down into either a pair of dipoles or a dipole plus a monopole. The growth of higher-azimuthal-wavenumber perturbations leads to the formation of more intricate compound vortices with cores in the shape of squares, pentagons, etc. However, numerical simulations show that these vortices are unstable, which agrees with results from point-vortex models.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H. & Pomphrey, N. 1982 Integrable and chaotic motions of four vortices. I. The case of identical vortices. Proc. R. Soc. Lond. A 380, 359387.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Carnevale, G. F., Briscolini, M., Purini, R. & Vallis, G. K. 1988 Numerical experiments on modon stability to topographic perturbations. Phys. Fluids 31, 25622566.Google Scholar
Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1991 Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 64, 27352737.Google Scholar
Carton, X. J., Flierl, G. R. & Polvani, L. M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.Google Scholar
Carton, X. J. & McWilliams, J. C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasi-geostrophic model. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 225244. Elsevier.
Eckhart, B. 1988 Integrable four vortex motion. Phys. Fluids 31, 27962801.Google Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.Google Scholar
Gent, P. R. & McWilliams, J. C. 1986 The instability of circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Heijst, G. J. F. van & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature, Lond. 338, 569571.Google Scholar
Heijst, G. J. F. van, Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301322.Google Scholar
Kloosterziel, R. C. 1990 Barotropic vortices in a rotating fluid. PhD thesis, University of Utrecht, The Netherlands.
Kloosterziel, R. C. & Heijst, G. J. F. van 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Legras, B., Santangelo, P. & Benzi, R. 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
Lin, S.-J. 1992 Contour dynamics of tornado-like vortices. J. Atmos. Sci. 49, 17451756.Google Scholar
Morikawa, G. K. & Swenson, E. V. 1971 Interacting motion of rectilinear geostrophic vortices. Phys. Fluids 14, 10581073.Google Scholar
Nguyen Duc, J. M. & Sommeria, J. 1988 Experimental characterization of steady two-dimensional vortex couples. J. Fluid Mech. 192, 175192.Google Scholar
Orlandi, P. & Heijst, G. J. F. van 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 170206.Google Scholar
Patterson, G. S. & Orszag, S. A. 1972 Spectral calculations of isotropic turbulence, efficient removal of aliasing interactions. Phys. Fluids 14, 25382541.Google Scholar
Rott, N. 1990 Constrained three- and four-vortex problems. Phys. Fluids A 2, 14771480.Google Scholar