Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T00:37:25.188Z Has data issue: false hasContentIssue false

Elliptic instability of a stratified fluid in a rotating cylinder

Published online by Cambridge University Press:  16 July 2010

D. GUIMBARD
Affiliation:
IRPHE, UMR 6594, CNRS, University of Aix-Marseille, 49 rue F. Joliot Curie, F-13013 Marseille, France LSEET, UMR 6017, CNRS, University of Toulon-Var, BP 20132, F-83957 La Garde Cedex, France
S. LE DIZÈS*
Affiliation:
IRPHE, UMR 6594, CNRS, University of Aix-Marseille, 49 rue F. Joliot Curie, F-13013 Marseille, France
M. LE BARS
Affiliation:
IRPHE, UMR 6594, CNRS, University of Aix-Marseille, 49 rue F. Joliot Curie, F-13013 Marseille, France
P. LE GAL
Affiliation:
IRPHE, UMR 6594, CNRS, University of Aix-Marseille, 49 rue F. Joliot Curie, F-13013 Marseille, France
S. LEBLANC
Affiliation:
LSEET, UMR 6017, CNRS, University of Toulon-Var, BP 20132, F-83957 La Garde Cedex, France
*
Email address for correspondence: [email protected]

Abstract

In this paper, we analyse the characteristics of the elliptic instability in a finite cylinder in the presence of both background rotation and axial stratification. A general formula for the linear growth rate of the stationary sinuous modes is derived including viscous and detuning effects in the limit of small eccentricity. This formula is discussed and compared to experimental results which are obtained in a cylinder filled with salted water for two different eccentricities by varying the stratification, the background rotation and the cylinder rotation. A good agreement with the theory concerning the domain of instability of the sinuous modes is demonstrated. Other elliptic instability modes, oscillating at the cylinder angular frequency are also evidenced together with a new type of instability mode, which could be connected to a centrifugal instability occurring during the experimental phase of spin-up. The nonlinear regime of the elliptic instability is also documented. In contrast with the homogeneous case, no cycle involving growth, breakdown and re-laminarization is observed in the presence of strong stratification. The elliptic instability in a stratified fluid seems to yield either a persistent turbulent state or a weakly nonlinear regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.CrossRefGoogle ScholarPubMed
Bayly, B. J., Orszag, S. A. & Herbert, T. 1988 Instability mechanisms in shear-flow transition. Annu. Rev. Fluid Mech. 20, 359391.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M 2000 a Theoretical analysis of the zigzag instability of a columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 419, 2963.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M 2000 b Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. J. Fluid Mech. 419, 6591.CrossRefGoogle Scholar
Billant, P., Colette, A. & Chomaz, J.-M 2004 Instabilities of a vortex pair in a stratified and rotating fluid. In XXI International Congress of Theoretical and Applied Mechanics, 15–21 August 2004, Warsaw, Poland. CD Rom.Google Scholar
Cariteau, B. & Flór, J.-B 2006 An experimental investigation on elliptical instability of a strongly asymmetric vortex pair in a stable density stratification. Nonlinear Process. Geophys. 13, 641649.CrossRefGoogle Scholar
Eloy, C. 2000 Instabilité multipolaire de tourbillons. PhD thesis, Université Aix-Marseille II, Marseille, France.Google Scholar
Eloy, C. & Le Dizès, S. 2001 Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids 13 (3), 660676.CrossRefGoogle Scholar
Eloy, C., Le Gal, P. & Le Dizès, S. 2000 Experimental study of the multipolar vortex instability. Phys. Rev. Lett. 85 (16), 145166.CrossRefGoogle ScholarPubMed
Eloy, C., Le Gal, P. & Le Dizès, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
Etling, D. 1989 On atmospheric vortex streets in the wake of large islands. Meteorol. Atmos. Phys. 41, 157164.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 The Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Fukumoto, Y. 2003 The three-dimensional instability of a strained vortex tube revisited. J. Fluid Mech. 493, 287318.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Guimbard, D. 2008 L'instabilité elliptique en milieu stratifié tournant. PhD thesis, Université de Toulon et du Var, Toulon, France.Google Scholar
Hill, D. F. 2002 General density gradients in general domains: the “two-tank” method revisited. Exp. Fluids 32, 434440.CrossRefGoogle Scholar
Kerswell, R. 1993 Elliptical instabilities of stratified, hydromagnetic waves. Geophys. Astrophys. Fluid Dyn. 71, 105143.CrossRefGoogle Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Kerswell, R. R. & Barenghi, C. F. 1995 On the viscous decay rates of inertial waves in a rotating circular cylinder. J. Fluid Mech. 285, 203214.CrossRefGoogle Scholar
Kudlick, M. 1966 On the transient motions in a contained rotating fluid. PhD thesis, MIT, Cambridge, MA.Google Scholar
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30 (8), 23392342.CrossRefGoogle Scholar
Le Bars, M., Le Dizès, S. & Le Gal, P. 2007 Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers. J. Fluid Mech. 585, 323342.CrossRefGoogle Scholar
Le Bars, M. & Le Gal, P. 2007 Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99, 064502.CrossRefGoogle Scholar
Le Dizès, S. 2008 Inviscid waves on a Lamb–Oseen vortex in a rotating stratified fluid: consequences on the elliptic instability. J. Fluid Mech. 597, 283303.CrossRefGoogle Scholar
Le Dizès, S. & Billant, P. 2009 Radiative instability in stratified vortices. Phys. Fluids 21, 096602.CrossRefGoogle Scholar
Le Dizès, S. & Lacaze, L. 2005 An asymptotic description of vortex Kelvin modes. J. Fluid Mech. 542, 6996.CrossRefGoogle Scholar
Leblanc, S. 2003 Internal wave resonances in strain flows. J. Fluid Mech. 477, 259283.CrossRefGoogle Scholar
Lesieur, M., Métais, O. & Garnier, E. 2000 Baroclinic instability and severe storms. J. Turb. 1, 117.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Three-dimensional instabilities in wake transition. Eur. J Mech. B/Fluids 17, 571586.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3 (11), 26442651.CrossRefGoogle Scholar
Malkus, W. V. R. 1989 An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123134.CrossRefGoogle Scholar
Miyazaki, T. 1993 Elliptical instability in a stably stratified rotating fluid. Phys. Fluids A 5 (11), 27022709.CrossRefGoogle Scholar
Miyazaki, T. & Fukumoto, Y. 1992 Three-dimensional instability of strained vortices in stably stratified fluid. Phys. Fluids A 4, 25152522.CrossRefGoogle Scholar
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2001 Instability and equilibration of centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 52705273.CrossRefGoogle ScholarPubMed
Polavarapu, S. M. & Peltier, W. R. 1993 Formation of small-scale cyclones in numerical simulations of synoptic-scale baroclinic wave life cycles: secondary instability at the cusp. J. Atmos. Sci. 50, 10471057.2.0.CO;2>CrossRefGoogle Scholar
Riedinger, X., Le Dizès, S. & Meunier, P. 2010 Viscous stability properties of a Lamb–Oseen vortex in a stratified fluid. J. Fluid Mech. 645, 255278.CrossRefGoogle Scholar
Schecter, D. A. & Montgomery, M. T. 2004 Damping and pumping of a vortex Rossby wave in a monotonic cyclone: critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids 16, 1334–48.CrossRefGoogle Scholar
Stegner, A., Pichon, T. & Beunier, M. 2005 Elliptical-inertial instability of rotating Karman streets. Phys. Fluids 17, 066602.CrossRefGoogle Scholar
Waleffe, F. 1989 The 3D instability of a strained vortex and its relation to turbulence. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2 (1), 7680.CrossRefGoogle Scholar