Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T10:35:44.527Z Has data issue: false hasContentIssue false

Electrohydrodynamics of particle-covered drops

Published online by Cambridge University Press:  16 June 2014

Malika Ouriemi*
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
Petia M. Vlahovska
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
*
Permanent address: IFPEN, Solaize, BP 3, 69360, France. Email address for correspondence: [email protected]

Abstract

We experimentally investigate the effect of surface-absorbed colloidal particles on the dynamics of a leaky dielectric drop in a uniform DC electric field. Depending on the particle polarizabilty, coverage and the electrical field intensity, particles assemble into various patterns such as an equatorial belt, pole-to-pole chains or a band of dynamic vortices. The particle structuring changes droplet electrohydrodynamics: under the same conditions where a particle-free drop would be a steady oblate spheroid, the belt can give rise to unsteady behaviours such as sustained drop wobbling or tumbling. Moreover, particle chaining can be accompanied by prolate drop deformation and tip-streaming.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aveyard, R., Binks, B. P. & Clint, J. H. 2003 Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503546.Google Scholar
Binks, P. B. 2002 Particles as surfactants – similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 2141.Google Scholar
Cebers, A., Lemaire, E. & Lobry, L. 2002 Electrohydrodynamic instabilities and orientation of dielectric ellipsoids in low-conducting fluids. Phys. Rev. E 63, 016301.Google Scholar
Cerda, E. & Mahadevan, L. 2003 Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302.CrossRefGoogle ScholarPubMed
Dolinsky, Y. & Elperin, T. 2009 Electrorotation of a leaky dielectric spheroid immersed in a viscous fluid. Phys. Rev. E 80, 066607.CrossRefGoogle Scholar
Dommersnes, P., Rozynek, Z., Mikkelsen, A., Castberg, R., Kjerstad, K., Hersvik, K. & Fossum, J. 2013 Active structuring of colloidal armor on liquid drops. Nat. Commun. 4, 2066.Google Scholar
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter 18, L185–L191.Google Scholar
Ha, J. W. & Yang, S. M. 2000 Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys. Fluids 12, 764772.Google Scholar
He, H., Salipante, P. F. & Vlahovska, P. M. 2013 Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25, 032106.Google Scholar
Jones, T. B. 1984 Quincke rotation of spheres. IEEE Trans. Ind. Applic. 20, 845849.CrossRefGoogle Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.CrossRefGoogle Scholar
Nudurupati, S., Janjua, M., Aubry, N. & Singh, P. 2008 Concentrating particles on drop surfaces using external electric fields. Electrophoresis 29, 11641172.CrossRefGoogle ScholarPubMed
Nudurupati, S., Janjua, M., Singh, P. & Aubry, N. 2009 Electrohydrodynamic removal of particles from drop surfaces. Phys. Rev. E 80, 010402R.CrossRefGoogle ScholarPubMed
Nudurupati, S., Janjua, M., Singh, P. & Aubry, N. 2010 Effect of parameters on redistribution and removal of particles from drop surfaces. Soft Matt. 6, 11571169.CrossRefGoogle Scholar
Planchette, C., Lorenceau, E. & Biance, A.-L. 2012 Surface wave on a particle raft. Soft Matt. 8, 24442451.Google Scholar
Pocivavsek, L., Frey, S. L., Krishan, K., Gavrilov, K., Ruchala, P., Waring, A. J., Walther, F. J., Dennin, M., Witten, T. A. & Lee, K. Y. C. 2008 Lateral stress relaxation and collapse in lipid monolayers. Soft Matt. 4, 20192029.Google Scholar
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110.CrossRefGoogle Scholar
Salipante, P. F. & Vlahovska, P. M. 2013 Electrohydrodynamic rotations of a viscous drop. Phys. Rev. E 88, 043003.Google Scholar
Sato, H., Kaji, N., Mochizuki, T. & Mori, Y. H. 2006 Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field. Phys. Fluids 18, 127101.Google Scholar
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. Circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291, 159166.Google Scholar
Vella, D., Aussillous, P. & Mahadevan, L. 2004 Elasticity of an interfacial particle raft. Europhys. Lett. 68, 212218.CrossRefGoogle Scholar

Ouriemi et al. supplementary material

Belt formation by Polyethylene (Pe) spheres. Coverage=35%. Ca=0.18

Download Ouriemi et al. supplementary material(Video)
Video 1.9 MB
Supplementary material: PDF

Ouriemi et al. supplementary material

Supplementary figures

Download Ouriemi et al. supplementary material(PDF)
PDF 373.9 KB

Ouriemi et al. supplementary material

Belt destabilization and formation of a dynamic sinusoid by Polyethylene (Pe) particles. Coverage=35%. Ca=1.36

Download Ouriemi et al. supplementary material(Video)
Video 1.6 MB

Ouriemi et al. supplementary material

Wobbling of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=3.43

Download Ouriemi et al. supplementary material(Video)
Video 1.1 MB

Ouriemi et al. supplementary material

Tumbling of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=3.74

Download Ouriemi et al. supplementary material(Video)
Video 1.1 MB

Ouriemi et al. supplementary material

Drum-like shape deformation of a drop covered with glass (G) particles. Coverage=91%. Ca=1.83

Download Ouriemi et al. supplementary material(Video)
Video 1.3 MB

Ouriemi et al. supplementary material

Drum-like shape deformation and implosion of a drop covered with glass (G) particles. Coverage=91%. Ca=2.62

Download Ouriemi et al. supplementary material(Video)
Video 1.2 MB

Ouriemi et al. supplementary material

Drum-like shape deformation and implosion of a drop covered with aluminum (Al) particles. Coverage=48%. Ca=5.84

Download Ouriemi et al. supplementary material(Video)
Video 519.4 KB