Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:18:18.311Z Has data issue: false hasContentIssue false

Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential

Published online by Cambridge University Press:  07 March 2007

W. D. RISTENPART
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
I. A. AKSAY
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
D. A. SAVILLE
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract

Electrohydrodynamic (EHD) flow around a charged spherical colloid near an electrode was studied theoretically and experimentally to understand the nature of long-range particle–particle attraction near electrodes. Numerical computations for finite double-layer thicknesses confirmed the validity of an asymptotic methodology for thin layers. Then the electric potential around the particle was computed analytically in the limit of zero Péclet number and thin double layers for oscillatory electric fields at frequencies where Faradaic reactions are negligible. Streamfunctions for the steady component of the EHD flow were determined with an electro-osmotic slip boundary condition on the electrode surface. Accordingly, it was established how the axisymmetric flow along the electrode is related to the dipole coefficient of the colloidal particle. Under certain conditions, the flow is directed toward the particle and decays as r−4, in accord with observations of long-range particle aggregation. To test the theory, particle-tracking experiments were performed with fluorescent 300 nm particles around 50μm particles over a wide range of electric field strengths and frequencies. Treating the particle surface conductivity as a fitting parameter yields velocities in excellent agreement with the theoretical predictions. The observed frequency dependence, however, differs from the model predictions, suggesting that the effect of convection on the charge distribution is not negligible as assumed in the zero Péclet number limit.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.CrossRefGoogle Scholar
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066101.CrossRefGoogle ScholarPubMed
Bhatt, K. H., Gregio, S. & Velev, O. D. 2005 An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 21, 66036612.CrossRefGoogle Scholar
Bikerman, J. 1939 Electrokinetic equations and surface conductance: a survey of the diffuse double layer theory of colloidal solutions. Trans. Faraday Soc. 36, 154160.Google Scholar
Böhmer, M. 1996 In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir 12, 57475750.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16, 242251.CrossRefGoogle Scholar
Dai, J. H., Ito, T., Sun, L. & Crooks, R. M. 2003 Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. J. Am. Chem. Soc. 125, 13 02613027.CrossRefGoogle Scholar
Delacey, E. H. B. & White, L. R. 1981 Dielectric response and conductivity of dilute suspensions of colloidal particles. J. Chem. Soc. Faraday Trans. II 77, 20072039.CrossRefGoogle Scholar
Dukhin, S. S. & Shilov, V. N. 1980 Kinetic aspects of electrochemistry of disperse systems 2: Induced dipole-moment and the nonequilibrium double-layer of a colloid particle. Adv. Colloid Interface Sci. 13, 153195.CrossRefGoogle Scholar
Fagan, J. A., Sides, P. J. & Prieve, P. C. 2002 Vertical oscillatory motion of a single colloidal particle adjacent to an electrode in an AC electric field. Langmuir 18, 78107820.CrossRefGoogle Scholar
Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. 1999 Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 4649.CrossRefGoogle ScholarPubMed
Gong, T. & Marr, D. W. M. 2001 Electrically switchable colloidal ordering in confined geometries. Langmuir 17, 23012304.CrossRefGoogle Scholar
Gong, T. Y., Wu, D. T. & Marr, D. W. M. 2002 Two-dimensional electrohydrodynamically induced colloidal phases. Langmuir 18, 10 06410067.CrossRefGoogle Scholar
Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. 2000 Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. ii. A linear double-layer analysis. Phys. Rev. E 61, 40194028.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff, Leiden.Google Scholar
Hollingsworth, A. D. & Saville, D. A. 2003 A broad frequency range dielectric spectrometer for colloidal suspensions: cell design, calibration, and validation. J. Colloid Interface Sci. 257, 6576.CrossRefGoogle ScholarPubMed
Jackson, J. D. 1975 Classical Electrodynamics, 2nd edn. John Wiley.Google Scholar
Joannopoulos, J. D. 2001 Self-assembly lights up. Nature 414, 257258.CrossRefGoogle ScholarPubMed
Kim, J., Guelcher, S. A., Garoff, S. & Anderson, J. L. 2002 Two-particle dynamics on an electrode in AC electric fields. Adv. Colloid Interface Sci. 96, 131142.CrossRefGoogle Scholar
Mangelsdorf, C. S. & White, L. R. 1990 Effects of Stern-layer conductance on electrokinetic transport-properties of colloidal particles. J. Chem. Soc. Faraday Trans. 86, 28592870.CrossRefGoogle Scholar
Mangelsdorf, C. S. & White, L. R. 1992 Electrophoretic mobility of a spherical colloidal particle in an oscillating electric-field. J. Chem. Soc. Faraday Trans. 88, 35673581.CrossRefGoogle Scholar
Moon, P. & Spencer, D. 1988 Field Theory Handbook: Including Coordinate Systems, Differential Equations, and their Solutions, 2nd edn. Springer.CrossRefGoogle Scholar
Morrison, F. A. & Stukel, J. J. 1970 Electrophoresis of an insulating sphere normal to a conducting plane. J. Colloid Interface Sci. 33, 88.CrossRefGoogle Scholar
Nadal, F., Argoul, F., Hanusse, P., Pouligny, B. & Ajdari, A. 2002 Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys. Rev. E 65, 061409.Google ScholarPubMed
O'Brien, R. W. 1986 The high-frequency dielectric-dispersion of a colloid. J. Colloid Interface Sci. 113, 8193.CrossRefGoogle Scholar
O'Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 16071626.CrossRefGoogle Scholar
O'Konski, C. T. 1960 Electric properties of macromolecules. 5. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605619.CrossRefGoogle Scholar
Pohl, H. A. 1967 Theoretical aspects of dielectrophoretic deposition and separation of particles. J. Electrochem. Soc. 114, C209.Google Scholar
Reed, L. D. & Morrison, F. A. 1976 Hydrodynamic interactions in electrophoresis. J. Colloid Interface Sci. 54, 117133.CrossRefGoogle Scholar
Ristenpart, W. D. 2005 Electric-field induced assembly of colloidal particles. PhD thesis, Princeton University.Google Scholar
Ristenpart, W. D., Aksay, I. A. & Saville, D. A. 2003 Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90, 128303.CrossRefGoogle ScholarPubMed
Ristenpart, W. D., Aksay, I. A. & Saville, D. A. 2004 Assembly of colloidal aggregates by electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys. Rev. E 69, 021405.Google ScholarPubMed
Rosen, L. A., Baygents, J. C. & Saville, D. A. 1993 The interpretation of dielectric response measurements on colloidal dispersions using the dynamic Stern layer model. J. Chem. Phys. 98, 41834194.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1991 Colloidal Dispersions, 1st edn. Cambridge University Press.Google Scholar
Sides, P. J. 2001 Electrohydrodynamic particle aggregation on an electrode driven by an alternating electric field normal to it. Langmuir 17, 57915800.CrossRefGoogle Scholar
Sides, P. J. 2003 Calculation of electrohydrodynamic flow around a single particle on an electrode. Langmuir 19, 27452751.CrossRefGoogle Scholar
Solomentsev, Y., Bohmer, M. & Anderson, J. L. 1997 Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 60586068.CrossRefGoogle Scholar
Solomentsev, Y., Guelcher, S. A., Bevan, M. & Anderson, J. L. 2000 Aggregation dynamics for two particles during electrophoretic deposition under steady fields. Langmuir 16, 92089216.CrossRefGoogle Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.CrossRefGoogle Scholar
Stimson, M. & Jeffery, G. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111, 110.Google Scholar
Stone, H. A. & Kim, S. 2001 Microfluidics: basic issues, applications, and challenges. AIChE J. 47, 12501254.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Tegenfeldt, J. O., Prinz, C., Cao, H., Huang, R. L., Austin, R. H., Chou, S. Y., Cox, E. C. & Sturm, J. C. 2004 Micro- and nanofluidics for dna analysis. Analyt. Bioanalyt. Chem. 378, 16781692.CrossRefGoogle ScholarPubMed
Trau, M., Saville, D. A. & Aksay, I. A. 1996 Field-induced layering of colloidal crystals. Science 272, 706709.CrossRefGoogle ScholarPubMed
Trau, M., Saville, D. A. & Aksay, I. A. 1997 Assembly of colloidal crystals at electrode interfaces. Langmuir 13, 63756381.CrossRefGoogle Scholar
Velev, O. & Kaler, E. 1999 In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15, 36933698.CrossRefGoogle Scholar
Whitesides, G. M. & Grzybowski, B. 2002 Self-assembly at all scales. Science 295, 24182421.CrossRefGoogle ScholarPubMed
Whitesides, G. M. & Stroock, A. D. 2001 Flexible methods for microfluidics. Phys. Today 54, 4248.CrossRefGoogle Scholar
Yeh, S. R., Seul, M. & Shraiman, B. I. 1997 Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 386, 5759.CrossRefGoogle ScholarPubMed
Zhang, K. Q. & Liu, X. Y. 2004 In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739743.CrossRefGoogle ScholarPubMed