Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T07:19:11.414Z Has data issue: false hasContentIssue false

Electric-field-mediated instability modes and Fréedericksz transition of thin nematic films

Published online by Cambridge University Press:  17 November 2017

Kartick Mondal
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
Abir Ghosh
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
Joydip Chaudhuri
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
Dipankar Bandyopadhyay*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India Centre for Nanotechnology, Indian Institute of Technology, Guwahati 781039, India
*
Email address for correspondence: [email protected]

Abstract

Instabilities at the deformable free surface of a thin nematic liquid crystal film can develop interesting patterns when exposed to an external electrostatic field. A general linear stability analysis is performed involving the Ericksen–Leslie governing equations for the dynamics of the nematic film coupled with the anisotropic Maxwell stresses for the electric field to uncover the salient features of these instabilities. The study reveals the coexistence of twin instability modes: (i) long-wave interfacial mode – stimulated when the sole destabilizing influence of the electric field overcomes the Frank bulk elasticity and surface tension force, and (ii) finite-wavenumber mode – engendered by the combined destabilizing influence originating from the anisotropic electric field and Ericksen stress, for the films with positive dielectric anisotropy and weaker Frank bulk elasticity. The results reported here are in contrast with the same obtained from the more frequently employed long-wave approach. The air-to-liquid-crystal filling ratio between the electrodes as well as thermodynamic parameters such as the dielectric anisotropy, Frank elasticity, and director orientations across the film and boundaries are found to play crucial roles in the selection of modes, whereas kinetic parameters such as Leslie viscosity coefficients influence only the time scale of instability. Importantly, at higher field intensities a symmetry-breaking Fréedericksz-type transition of director orientations is found to happen, which also causes the transition of the dominant mode of instability from the long-wave to the finite-wavenumber mode for films with relatively lower values of Frank bulk elasticity and positive dielectric anisotropy.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equal contribution from the authors.

References

Arun, N., Sharma, A., Pattader, P. S. G., Banerjee, I., Dixit, H. M. & Narayan, K. S. 2009 Electric-field-induced patterns in soft viscoelastic films: from long waves of viscous liquids to short waves of elastic solids. Phys. Rev. Lett. 102 (25), 254502.CrossRefGoogle ScholarPubMed
Arun, N., Sharma, A., Shenoy, V. B. & Narayan, K. S. 2006 Electric-field-controlled surface instabilities in soft elastic films. Adv. Mater. 18 (5), 660663.CrossRefGoogle Scholar
Bandyopadhyay, D., Reddy, D. S. P. & Sharma, A. 2012 Electric field and van der Waals force induced instabilities in thin viscoelastic bilayers. Phys. Fluids 24 (7), 074106.CrossRefGoogle Scholar
Bandyopadhyay, D., Sharma, A. & Shankar, V. 2008 Instabilities and pattern miniaturization in confined and free elastic–viscous bilayers. J. Chem. Phys. 128 (15), 154909.Google ScholarPubMed
Bandyopadhyay, D., Sharma, A. & Shankar, V. 2010 Electric-field- and contact-force-induced tunable patterns in slipping soft elastic films. Europhys. Lett. 89 (3), 36002.CrossRefGoogle Scholar
Bandyopadhyay, D., Sharma, A., Thiele, U. & Reddy, P. D. S. 2009 Electric-field-induced interfacial instabilities and morphologies of thin viscous and elastic bilayers. Langmuir 25 (16), 91089118.CrossRefGoogle ScholarPubMed
Barbero, G., Evangelista, L. R. & Madhusudana, N. V. 1998 Effect of surface electric field on the anchoring of nematic liquid crystals. Eur. Phys. J. B 1 (3), 327331.CrossRefGoogle Scholar
van der Beek, D., Davidson, P., Wensink, H. H., Vroege, G. J. & Lekkerkerker, H. N. W. 2008 Influence of a magnetic field on the nematic phase of hard colloidal platelets. Phys. Rev. E 77 (3), 031708.CrossRefGoogle ScholarPubMed
Ben Amar, M. & Cummings, L. J. 2001 Fingering instabilities in driven thin nematic films. Phys. Fluids 13 (5), 11601166.CrossRefGoogle Scholar
Berreman, D. W. 1972 Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 28 (26), 16831686.CrossRefGoogle Scholar
Carou, J. Q., Mottram, N. J., Wilson, S. K. & Duffy, B. R. 2007 A mathematical model for blade coating of a nematic liquid crystal. Liq. Cryst. 34 (5), 621631.CrossRefGoogle Scholar
Casquilho, J. P. 1999 Linear analysis of pattern formation in nematics in oblique magnetic fields. Liq. Cryst. 26 (4), 517524.CrossRefGoogle Scholar
Chandrasekhar, S. 1992 Liquid Crystals, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Chevallard, C. & Clerc, M. G. 2002 Inhomogeneous Fréedericksz transition in nematic liquid crystals. Phys. Rev. E 65 (1), 011708.Google ScholarPubMed
Chou, S. Y. & Zhuang, L. 1999 Lithographically induced self-assembly of periodic polymer micropillar arrays. J. Vac. Sci. Technol. B 17 (6), 31973202.Google Scholar
Chou, S. Y., Zhuang, L. & Guo, L. 1999 Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75 (7), 10041006.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17 (3), 032104.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.CrossRefGoogle Scholar
Cummings, L. J. 2004 Evolution of a thin film of nematic liquid crystal with anisotropic surface energy. Eur. J. Appl. Maths 15 (6), 651677.CrossRefGoogle Scholar
Cummings, L. J., Lin, T.-S. & Kondic, L. 2011 Modeling and simulations of the spreading and destabilization of nematic droplets. Phys. Fluids 23 (4), 043102.CrossRefGoogle Scholar
Delabre, U., Richard, C. & Cazabat, A. M. 2009 Some specificities of wetting by cyanobiphenyl liquid crystals. J. Phys.: Condens. Matter 21 (46), 464129.Google ScholarPubMed
Deshpande, P., Sun, X. & Chou, S. Y. 2001 Observation of dynamic behavior of lithographically induced self-assembly of supramolecular periodic pillar arrays in a homopolymer film. Appl. Phys. Lett. 79 (11), 16881690.CrossRefGoogle Scholar
Dickey, M. D., Gupta, S., Leach, K. A., Collister, E., Willson, C. G. & Russell, T. P. 2006 Novel 3-D structures in polymer films by coupling external and internal fields. Langmuir 22 (9), 43154318.CrossRefGoogle ScholarPubMed
Dickey, M. D., Raines, A., Collister, E., Bonnecaze, R. T., Sreenivasan, S. V. & Willson, C. G. 2008 High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning. J. Mater. Sci. 43 (1), 117122.CrossRefGoogle Scholar
Ericksen, J. L. 1962 Hydrostatic theory of liquid crystals. Arch. Rat. Mech. Anal. 9 (1), 371378.CrossRefGoogle Scholar
Ericksen, J. L. 1967 General solutions in the hydrostatic theory of liquid crystals. Trans. Soc. Rheol. 11 (1), 514.CrossRefGoogle Scholar
Faetti, S. & Palleschi, V. 1985 Experimental investigation of surface deformations at the nematic–isotropic interface – A new method to measure the Nehring-Saupe elastic-constant K-13 (+). J. Phys. (Paris) 46 (3), 415424.CrossRefGoogle Scholar
Fraden, S. & Meyer, R. B. 1986 Nonequilibrium periodic structures induced by rotating and static fields in a lyotropic nematic liquid-crystal – Comment. Phys. Rev. Lett. 57 (24), 3122.CrossRefGoogle Scholar
Frank, F. C. 1958 I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25, 1928.CrossRefGoogle Scholar
Fukuda, J., Yoneya, M. & Yokoyama, H. 2007 Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined. Phys. Rev. Lett. 98 (18), 187803.CrossRefGoogle ScholarPubMed
Gartland, E. C. Jr, Huang, H., Lavrentovich, O. D., Palffy-Muhoray, P., Smalyukh, I. I., Kosa, T. & Taheri, B. 2010 Electric-field induced transitions in a cholesteric liquid-crystal film with negative dielectric anisotropy. J. Comput. Theor. Nanosci. 7 (4), 709725.CrossRefGoogle Scholar
de Gennes, P. G. 1985 Wetting: Statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.CrossRefGoogle Scholar
de Gennes, P. G. & Prost, J. 1993 The Physics of Liquid Crystals, 2nd edn. Clarendon Press.Google Scholar
Gottlieb, D. & Orszag, S. 1977 Numerical Analysis of Spectral Methods. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Guan, R.-H. & Yang, G.-C. 2003 First-order Fréedericksz transition at the threshold point for weak anchoring nematic liquid crystal cell under external electric and magnetic fields. Chin. Phys. 12 (11), 12831290.Google Scholar
Harkema, S. & Steiner, U. 2005 Hierarchical pattern formation in thin polymer films using an electric field and vapor sorption. Adv. Funct. Mater. 15 (12), 20162020.CrossRefGoogle Scholar
Herminghaus, S. 1999 Dynamical instability of thin liquid films between conducting media. Phys. Rev. Lett. 83 (12), 23592361.CrossRefGoogle Scholar
Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M. & Schlagowski, S. 1998 Spinodal dewetting in liquid crystal and liquid metal films. Science 282 (5390), 916919.CrossRefGoogle ScholarPubMed
Jenkins, J. T. & Barratt, P. J. 1974 Interfacial effects in the static theory of nematic liquid crystals. Q. J. Mech. Appl. Math. 27 (1), 111127.CrossRefGoogle Scholar
Kuzma, M. R. 1986 Nonequilibrium periodic structures induced by rotating and static fields in a lyotropic nematic liquid-crystal. Phys. Rev. Lett. 57 (3), 349352.CrossRefGoogle Scholar
Leach, K. A., Gupta, S., Dickey, M. D., Willson, C. G. & Russell, T. P. 2005 Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers. Chaos 15 (4), 047506.CrossRefGoogle ScholarPubMed
Leslie, F. M. 1992 Continuum theory for nematic liquid crystals. Contin. Mech. Thermodyn. 4 (3), 167175.CrossRefGoogle Scholar
Lin, T.-S., Cummings, L. J., Archer, A. J., Kondic, L. & Thiele, U. 2013a Note on the hydrodynamic description of thin nematic films: Strong anchoring model. Phys. Fluids 25 (8), 082102.CrossRefGoogle Scholar
Lin, T.-S., Kondic, L., Thiele, U. & Cummings, L. J. 2013b Modelling spreading dynamics of nematic liquid crystals in three spatial dimensions. J. Fluid Mech. 729, 214230.CrossRefGoogle Scholar
Lin, Z., Kerle, T., Baker, S. M., Hoagland, D. A., Schäffer, E., Steiner, U. & Russell, T. P. 2001 Electric field induced instabilities at liquid/liquid interfaces. J. Chem. Phys. 114 (5), 23772381.CrossRefGoogle Scholar
Lin, Z., Kerle, T., Russell, T. P., Schäffer, E. & Steiner, U. 2002a Electric field induced dewetting at polymer/polymer interfaces. Macromolecules 35 (16), 62556262.CrossRefGoogle Scholar
Lin, Z., Kerle, T., Russell, T. P., Schäffer, E. & Steiner, U. 2002b Structure formation at the interface of liquid/liquid bilayer in electric field. Macromolecules 35 (10), 39713976.CrossRefGoogle Scholar
Manyuhina, O. V., Cazabat, A.-M. & Ben Amar, M. 2010 Instability patterns in ultrathin nematic films: Comparison between theory and experiment. Europhys. Lett. 92 (1), 16005.CrossRefGoogle Scholar
Mcginn, C. K., Laderman, L. I., Zimmermann, N., Kitzerow, H.-S. & Collings, P. J. 2013 Planar anchoring strength and pitch measurements in achiral and chiral chromonic liquid crystals using 90-degree twist cells. Phys. Rev. E 88 (6), 062513.Google ScholarPubMed
Mechkov, S., Cazabat, A. M. & Oshanin, G. 2009 Post-Tanner spreading of nematic droplets. J. Phys.: Condens. Matter 21 (46), 464134.Google ScholarPubMed
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics – A review of role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.CrossRefGoogle Scholar
Mondal, K., Kumar, P. & Bandyopadhyay, D. 2013 Electric field induced instabilities of thin leaky bilayers: Pathways to unique morphologies and miniaturization. J. Chem. Phys. 138 (2), 024705.Google ScholarPubMed
Morariu, M. D., Voicu, N. E., Schäffer, E., Lin, Z. Q., Russell, T. P. & Steiner, U. 2003 Hierarchical structure formation and pattern replication induced by an electric field. Nat. Mater. 2 (1), 4852.CrossRefGoogle ScholarPubMed
Müller, O. & Brand, H. R. 2005 Undulation versus Frederiks instability in nematic elastomers in an external electric field. Eur. Phys. J. E 17 (1), 5362.CrossRefGoogle Scholar
Münch, A., Wagner, B., Rauscher, M. & Blossey, R. 2006 A thin-film model for corotational Jeffreys fluids under strong slip. Eur. Phys. J. E 20 (4), 365368.Google ScholarPubMed
Myers, T. G. 2005 Application of non-Newtonian models to thin film flow. Phys. Rev. E 72 (6), 066302.CrossRefGoogle ScholarPubMed
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.CrossRefGoogle Scholar
Oswald, P. 2010a Elasto- and electro-capillary instabilities of a nematic–isotropic interface: Experimental results. Eur. Phys. J. E 33 (1), 6979.Google ScholarPubMed
Oswald, P. 2010b Electro-capillary instability of a nematic–isotropic interface. Europhys. Lett. 90 (1), 16005.CrossRefGoogle Scholar
Otten, R. H. J. & van der Schoot, P. 2009 Capillary rise of an isotropic–nematic fluid interface: surface tension and anchoring versus elasticity. Langmuir 25 (4), 24272436.CrossRefGoogle ScholarPubMed
Pease, L. F. III & Russel, W. B. 2002 Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non-Newtonian Fluid Mech. 102 (2), 233250.CrossRefGoogle Scholar
Pease, L. F. III & Russel, W. B. 2003 Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis. J. Chem. Phys. 118 (8), 37903803.CrossRefGoogle Scholar
Pease, L. F. III & Russel, W. B. 2004 Limitations on length scales for electrostatically induced submicrometer pillars and holes. Langmuir 20 (3), 795804.CrossRefGoogle ScholarPubMed
Pease, L. F. III & Russel, W. B. 2006 Charge driven, electrohydrodynamic patterning of thin films. J. Chem. Phys. 125 (18), 184716.Google ScholarPubMed
Poulard, C. & Cazabat, A. M. 2005 Spontaneous spreading of nematic liquid crystals. Langmuir 21 (14), 62706276.CrossRefGoogle ScholarPubMed
Qian, T. & Sheng, P. 1998 Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 58 (6), 74757485.Google Scholar
Raghunathan, V. A. 1995 Undulatory instability of the nematic–isotropic interface. Phys. Rev. E 51 (2), 896902.Google ScholarPubMed
Rapini, A. & Papoular, M. 1969 Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J. Phys. Colloques 30 (C4), 5456.Google Scholar
Ravi, B., Mukherjee, R. & Bandyopadhyay, D. 2015 Solvent vapour mediated spontaneous healing of self-organized defects of liquid crystal films. Soft Matt. 11 (1), 139146.CrossRefGoogle ScholarPubMed
Reddy, P. D. S., Bandyopadhyay, D. & Sharma, A. 2010 Self-organized ordered arrays of core-shell columns in viscous bilayers formed by spatially varying electric fields. J. Phys. Chem. C 114 (49), 2102021028.CrossRefGoogle Scholar
Reddy, P. D. S., Bandyopadhyay, D. & Sharma, A. 2012 Electric-field-induced instabilities in thin liquid trilayers confined between patterned electrodes. J. Phys. Chem. C 116 (43), 2284722858.CrossRefGoogle Scholar
Rey, A. D. 1991 Periodic textures of nematic polymers and orientational slip. Macromolecules 24 (15), 44504456.CrossRefGoogle Scholar
Rey, A. D. & Denn, M. M. 2002 Dynamical phenomena in liquid-crystalline materials. Annu. Rev. Fluid Mech. 34 (1), 233266.CrossRefGoogle Scholar
Rey, A. D. & Herrera-Valencia, E. E. 2014 Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate. Soft Matt. 10 (10), 16111620.CrossRefGoogle Scholar
Roberts, S. A. & Kumar, S. 2009 AC electrohydrodynamic instabilities in thin liquid films. J. Fluid Mech. 631, 255279.CrossRefGoogle Scholar
Roberts, S. A. & Kumar, S. 2010 Electrohydrodynamic instabilities in thin liquid trilayer films. Phys. Fluids 22 (12), 122102.CrossRefGoogle Scholar
Sarkar, J., Sharma, A. & Shenoy, V. B. 2008 Electric-field induced instabilities and morphological phase transitions in soft elastic films. Phys. Rev. E 77 (3), 031604.Google ScholarPubMed
Saville, D. A. 1997 Electrohydrodynamics: The Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Schäffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. 2000 Electrically induced structure formation and pattern transfer. Nature 403 (6772), 874877.CrossRefGoogle ScholarPubMed
Schäffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. 2001 Electrohydrodynamic instabilities in polymer films. Europhys. Lett. 53 (4), 518524.CrossRefGoogle Scholar
Shankar, V. & Sharma, A. 2004 Instability of the interface between thin fluid films subjected to electric fields. J. Colloid Interface Sci. 274 (1), 294308.CrossRefGoogle ScholarPubMed
Srivastava, S., Bandyopadhyay, D. & Sharma, A. 2010a Embedded microstructures by electric-field-induced pattern formation in interacting thin layers. Langmuir 26 (13), 1094310952.CrossRefGoogle ScholarPubMed
Srivastava, S., Reddy, P. D. S., Wang, C., Bandyopadhyay, D. & Sharma, A. 2010b Electric field induced microstructures in thin films on physicochemically heterogeneous and patterned substrates. J. Chem. Phys. 132 (17), 174703.Google ScholarPubMed
Stephen, M. J. & Straley, J. P. 1974 Physics of liquid crystals. Rev. Mod. Phys. 46 (4), 617704.CrossRefGoogle Scholar
Stewart, I. W. 2004 The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction, 1st edn. Taylor and Francis.Google Scholar
Tavener, S. J., Mullin, T., Blake, G. I. & Cliffe, K. A. 2000 Numerical bifurcation study of electrohydrodynamic convection in nematic liquid crystals. Phys. Rev. E 63 (1), 011708.Google ScholarPubMed
Tomar, G., Shankar, V., Sharma, A. & Biswas, G. 2007 Electrohydrodynamic instability of a confined viscoelastic liquid film. J. Non-Newtonian Fluid Mech. 143 (2), 120130.CrossRefGoogle Scholar
Tomar, G., Shankar, V., Shukla, S. K., Sharma, A. & Biswas, G. 2006 Instability and dynamics of thin viscoelastic liquid films. Eur. Phys. J. E 20 (2), 185200.Google ScholarPubMed
Tsuji, T. & Rey, A. D. 1997 Effect of long range order on sheared liquid crystalline materials Part 1: compatibility between tumbling behavior and fixed anchoring. J. Non-Newtonian Fluid Mech. 73 (1), 127152.CrossRefGoogle Scholar
Van Oss, C. J., Chaudhury, M. K. & Good, R. J. 1988 Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88 (6), 927941.CrossRefGoogle Scholar
Vandenbrouck, F., Valignat, M. P. & Cazabat, A. M. 1999 Thin nematic films: Metastability and spinodal dewetting. Phys. Rev. Lett. 82 (13), 26932696.CrossRefGoogle Scholar
Verma, R., Sharma, A., Kargupta, K. & Bhaumik, J. 2005 Electric field induced instability and pattern formation in thin liquid films. Langmuir 21 (8), 37103721.CrossRefGoogle ScholarPubMed
Voicu, N. E., Harkema, S. & Steiner, U. 2006 Electric-field-induced pattern morphologies in thin liquid films. Adv. Funct. Mater. 16 (7), 926934.CrossRefGoogle Scholar
Weideman, J. A. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Wu, N., Pease, L. F. III & Russel, W. B. 2005 Electric-field-induced patterns in thin polymer films: Weakly nonlinear and fully nonlinear evolution. Langmuir 21 (26), 1229012302.CrossRefGoogle ScholarPubMed
Yokoyama, H., Kobayashi, S. & Kamei, H. 1985 Deformations of a planar nematic–isotropic interface in uniform and nonuniform electric fields. Mol. Cryst. Liq. Cryst. 129 (1–3), 109126.CrossRefGoogle Scholar
Zhang, Y.-J., Zhang, Z.-D., Zhu, L.-Z. & Xuan, L. 2011 Effects of weak anchoring on the azimuthal anchoring energy of a nematic liquid crystal at a grooved interface. Liq. Cryst. 38 (3), 355359.CrossRefGoogle Scholar
Žumer, S. & Doane, J. W. 1986 Light scattering from a small nematic droplet. Phys. Rev. A 34 (4), 33733386.CrossRefGoogle ScholarPubMed