Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T05:06:44.171Z Has data issue: false hasContentIssue false

Elastohydrodynamic wake and wave resistance

Published online by Cambridge University Press:  22 September 2017

Maxence Arutkin
Affiliation:
Laboratoire de Physico-Chimie Théorique, UMR CNRS 7083 Gulliver, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
René Ledesma-Alonso*
Affiliation:
CONACYT, Universidad de Quintana Roo, Boulevard Bahía s/n, Chetumal, 77019 Quintana Roo, México
Thomas Salez
Affiliation:
Laboratoire de Physico-Chimie Théorique, UMR CNRS 7083 Gulliver, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
Élie Raphaël
Affiliation:
Laboratoire de Physico-Chimie Théorique, UMR CNRS 7083 Gulliver, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

The dynamics of a thin elastic sheet lubricated by a narrow layer of liquid is relevant to various situations and length scales. As a continuation of our previous work on viscous wakes (Ledesma-Alonso et al., J. Fluid Mech., vol. 792, 2016, pp. 829–849), we study theoretically the effects of an external pressure disturbance moving at constant speed along the surface of a thin lubricated elastic sheet. In the comoving frame, the imposed pressure field creates a stationary deformation of the free interface that spatially vanishes in the far-field region. The shape of the wake and the way it decays depend on the speed and size of the external disturbance, as well as the rheological properties of both the elastic and liquid layers. The wave resistance, namely the force that has to be externally furnished in order to maintain the wake, is analysed in detail.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Housseiny, T. T., Christov, I. C. & Stone, H. A. 2013 Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111 (3), 034502.Google Scholar
Alleborn, N., Sharma, A. & Delgado, A. 2007 Probing of thin slipping films by persistent external disturbances. Can. J. Chem. Engng 85, 586597.Google Scholar
Blyth, M. G., Părău, E. I. & Vanden-Broeck, J.-M. 2011 Hydroelastic waves on fluid sheets. J. Fluid Mech. 689, 541551.Google Scholar
Carlson, A. & Mahadevan, L. 2016 Similarity and singularity in adhesive elastohydrodynamic touchdown. Phys. Fluids 28 (1), 011702.Google Scholar
Carlson, A., Mandre, S. & Mahadevan, L.2015 Elastohydrodynamics of contact in adherent sheets. arXiv:1508.06234.Google Scholar
Daddi-Moussa-Ider, A., Guckenberger, A. & Gekle, S. 2016 Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93, 012612.Google ScholarPubMed
Darmon, A., Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 738, R3.Google Scholar
Darrigol, O. 2005 Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.Google Scholar
Démery, V. & Dean, D. S. 2010 Drag forces in classical fields. Phys. Rev. Lett. 104, 080601.Google Scholar
Duprat, C., Aristoff, J. M. & Stone, H. A. 2011 Dynamics of elastocapillary rise. J. Fluid Mech. 679, 641654.CrossRefGoogle Scholar
Flitton, J. C. & King, J. R. 2004 Moving-boundary and fixed-domain problems for a sixth-order thin-film equation. Eur. J. Appl. Maths 15 (06), 713754.Google Scholar
Guyenne, P. & Părău, E. I. 2014 Forced and unforced flexural-gravity solitary waves. Proc. IUTAM 11, 4457.Google Scholar
Havelock, T. H. 1932 The theory of wave resistance. Proc. R. Soc. Lond. A 138 (835), 339348.Google Scholar
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93 (13), 137802.Google Scholar
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424 (6949), 663666.Google Scholar
Kelvin, Lord 1887 On ship waves. Proc. Inst. Mech. Engrs 3, 409434.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Theory of Elasticity: Course of Theoretical Physics, vol. 7, pp. 1015. Pergamon.Google Scholar
Ledesma-Alonso, R., Benzaquen, M., Salez, T. & Raphaël, E. 2016 Wake and wave resistance on viscous thin films. J. Fluid Mech. 792, 829849.Google Scholar
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.CrossRefGoogle Scholar
Pandey, A., Karpitschka, S., Venner, C. H. & Snoeijer, J. H. 2016 Lubrication of soft viscoelastic solids. J. Fluid Mech. 799, 433447.Google Scholar
Părău, E. & Dias, F. 2002 Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460, 281305.Google Scholar
Părău, E. I. & Vanden-Broeck, J.-M. 2011 Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Phil. Trans. R. Soc. Lond. A 369 (1947), 29732988.Google ScholarPubMed
Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502.CrossRefGoogle Scholar
Rabaud, M. & Moisy, F. 2013 Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett. 110 (21), 214503.Google Scholar
Raphaël, E. & De Gennes, P.-G. 1996 Capillary gravity waves caused by a moving disturbance: wave resistance. Phys. Rev. E 53 (4), 3448.Google Scholar
Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. 2016 Self-sustained lift and low friction via soft lubrication. Proc. Natl Acad. Sci. USA 113, 5847.CrossRefGoogle ScholarPubMed
Salez, T. & Mahadevan, L. 2015 Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779, 181.Google Scholar
Seiwert, J., Quéré, D. & Clanet, C. 2013 Flexible scraping of viscous fluids. J. Fluid Mech. 715, 424435.CrossRefGoogle Scholar
Sekimoto, K. & Leibler, L. 1993 A mechanism for shear thickening of polymer-bearing surfaces: elasto-hydrodynamic coupling. Europhys. Lett. 23, 113.Google Scholar
Skotheim, J. M. & Mahadevan, L. 2004 Soft lubrication. Phys. Rev. Lett. 92, 245509.CrossRefGoogle ScholarPubMed
Snoeijer, J. H., Eggers, J. & Venner, C. H. 2013 Similarity theory of lubricated Hertzian contacts. Phys. Fluids 25 (10), 101705.Google Scholar
Stone, H. A. & Duprat, C. 2015 Model problems coupling elastic boundaries and viscous flows. In Fluid–Structure Interactions in Low-Reynolds-Number Flows: Royal Society of Chemistry Soft Matter Series, pp. 7899. Royal Society of Chemistry.Google Scholar
Villey, R., Martinot, E., Cottin-Bizonne, C., Phaner-Goutorbe, M., Léger, L., Restagno, F. & Charlaix, E. 2013 Effect of surface elasticity on the rheology of nanometric liquids. Phys. Rev. Lett. 111, 215701.Google Scholar
Wedolowski, K. & Napiórkowski, M. 2015 Dynamics of a liquid film of arbitrary thickness perturbed by a nano-object. Soft Matt. 11 (13), 26392654.Google Scholar
Supplementary material: File

Arutkin et al. supplementary material

Arutkin et al. supplementary material 1

Download Arutkin et al. supplementary material(File)
File 3 MB