Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T04:06:09.007Z Has data issue: false hasContentIssue false

Elastic-plated gravity currents with a temperature-dependent viscosity

Published online by Cambridge University Press:  16 September 2016

Clement Thorey*
Affiliation:
Planetary and Space Science, Institut de Physique du Globe de Paris, UMR 7154 CNRS, F-75013 Paris, France
Chloé Michaut
Affiliation:
Planetary and Space Science, Institut de Physique du Globe de Paris, UMR 7154 CNRS, F-75013 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We develop a set of equations to explore the behaviour of cooling elastic-plated gravity currents for constant influx conditions. In particular, we introduce a temperature-dependent viscosity to couple the flow thermal structure with the velocity field. We show that this coupling results in important deviations from the isoviscous case. In particular, the bending and gravity asymptotic regimes, characteristic of the isoviscous case, both split into three different thermal phases: a first ‘hot’ isoviscous phase, a second phase where the spreading rate drastically decreases and the flow thickens and a third ‘cold’ isoviscous phase. The viscosity that controls the spreading rate differs in both asymptotic regimes; it is the average viscosity of a small peeling region at the current tip in the bending regime and the average flow viscosity in the gravity regime. In both regimes, we characterize the evolution of the thermal anomaly and determine the time scale of the phase changes in terms of the Péclet number and of the viscosity contrast. Finally, we show that the evolution with bending and gravity can result in six different evolution scenarios depending on the combination of dimensionless numbers considered. We provide a phase diagram which summarizes them as a function of the flow Péclet number and viscosity contrast.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J., Craster, R. V. & Sassi, R. 2004 Dynamics of cooling viscoplastic domes. J. Fluid Mech. 499, 149182.Google Scholar
Bercovici, D. 1994 A theoretical model of cooling viscous gravity currents with temperature-dependent viscosity. Geophys. Res. Lett. 21 (12), 11771180.Google Scholar
Bercovici, D. & Lin, J. 1996 A gravity current model of cooling mantle plume heads with temperature-dependent buoyancy and viscosity. J. Geophys. Res. 101 (B2), 32913309.Google Scholar
Bertozzi, A. L. 1998 The mathematics of moving contact lines in thin liquid films. Not. Am. Math. Soc. 45 (6), 689697.Google Scholar
Bunger, A. P. & Cruden, A. R. 2011 Modeling the growth of laccoliths and large mafic sills: Role of magma body forces. J. Geophys. Res. 116 (B2), B02203.Google Scholar
Dixon, J. M. & Simpson, D. G. 1987 Centrifuge modelling of laccolith intrusion. J. Struct. Geol. 9 (1), 87103.CrossRefGoogle Scholar
Flitton, J. C. & King, J. R. 2004 Moving-boundary and fixed-domain problems for a sixth-order thin-film equation. Eur. J. Appl. Maths 15 (06), 713754.CrossRefGoogle Scholar
Garel, F., Kaminski, E., Tait, S. & Limare, A. 2014 An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows. Earth Planet. Sci. Lett. 396, 4655.CrossRefGoogle Scholar
Giordano, D., Russell, J. K. & Dingwell, D. B. 2008 Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271 (1), 123134.Google Scholar
Goodman, T. R. 1958 The heat-balance integral and its application to problems involving a change of phase. Trans. ASME 85, 335342.Google Scholar
Hewitt, I. J., Balmforth, N. J. & De Bruyn, J. R. 2015 Elastic-plated gravity currents. Eur. J. Appl. Maths 26 (1), 131.CrossRefGoogle Scholar
Hort, M. 1997 Cooling and crystallization in sheet-like magma bodies revisited. J. Volcanol. Geotherm. Res. 76 (3), 297317.CrossRefGoogle Scholar
Hosoi, A. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93 (13), 137802.CrossRefGoogle Scholar
Huppert, H. E. 1982a Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.Google Scholar
Huppert, H. E. 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.Google Scholar
Lejeune, A. M. & Richet, P. 1995 Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res. 100 (B3), 42154229.Google Scholar
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.CrossRefGoogle Scholar
Marsh, B. D. 1981 On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78 (1), 8598.CrossRefGoogle Scholar
Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. Solid Earth 116, B05205.Google Scholar
Michaut, C. & Jaupart, C. 2006 Ultra-rapid formation of large volumes of evolved magma. Earth Planet. Sci. Lett. 250 (1), 3852.Google Scholar
Peng, G. G., Pihler-Puzović, D., Juel, A., Heil, M. & Lister, J. R. 2015 Displacement flows under elastic membranes. Part 2. Analysis of interfacial effects. J. Fluid Mech. 784, 512547.CrossRefGoogle Scholar
Pihler-Puzović, D., Juel, A., Peng, G. G. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1. Experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.Google Scholar
Shaw, H. R. 1972 Viscosities of magmatic silicate liquids; an empirical method of prediction. Am. J. Sci. 272 (9), 870893.CrossRefGoogle Scholar
Slim, A. C., Balmforth, N. J., Craster, R. V. & Miller, J. C. 2009 Surface wrinkling of a channelized flow. Proc. R. Soc. Lond. A 465 (2101), 123142.Google Scholar
Thorey, C. & Michaut, C. 2014 A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters. J. Geophys. Res. 119, 286312.CrossRefGoogle Scholar