Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T19:54:43.208Z Has data issue: false hasContentIssue false

Efficient mixing by swirling electrovortex flows in liquid metal batteries

Published online by Cambridge University Press:  11 March 2021

W. Herreman*
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400Orsay, France
C. Nore
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400Orsay, France
L. Cappanera
Affiliation:
Department of Mathematics, University of Houston, Houston, TX77204-3008, USA
J.-L. Guermond
Affiliation:
Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX77843-3368, USA
*
Email address for correspondence: [email protected]

Abstract

Using direct numerical simulations, we show that swirling electrovortex flows significantly enhance the mixing of the bottom layer alloy in liquid metal batteries during discharge. By studying the flow in various parameter regimes, we identify and explain a novel scaling law for the intensity of these swirling electrovortex flows. Using this scaling law and the model described in Herreman et al. (Phys. Rev. Fluids, vol. 5, 2020, 074501), we estimate the minimal intensity of the external magnetic field that is needed for the swirling electrovortex to enhance the mixing of the alloys in the bottom electrode of arbitrary liquid metal batteries.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashour, R.F. & Kelley, D.H. 2018 Convection-diffusion model of Lithium-Bismuth liquid metal batteries. In TMS Annual Meeting & Exhibition, pp. 41–52. Springer.CrossRefGoogle Scholar
Ashour, R.F., Kelley, D.H., Salas, A., Starace, M., Weber, N. & Weier, T. 2018 Competing forces in liquid metal electrodes and batteries. J. Power Sources 378, 301310.CrossRefGoogle Scholar
Bojarevics, V., Freibergs, J.A., Shilova, E.I. & Shcherbinin, E.V. 1989 Electrically Induced Vortical Flows. Kluwer Academic Publishers.CrossRefGoogle Scholar
Bojarevičs, V. & Shcherbinin, E.V. 1983 Azimuthal rotation in the axisymmetric meridional flow due to an electric-current source. J. Fluid Mech. 126, 413430.CrossRefGoogle Scholar
Bonito, A., Guermond, J.-L. & Luddens, F. 2013 Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2), 498512.CrossRefGoogle Scholar
Cappanera, L., Guermond, J.-L., Herreman, W. & Nore, C. 2018 Momentum-based approximation of incompressible multiphase fluid flows. Intl J. Numer. Meth. Fluids 86 (8), 541563.CrossRefGoogle Scholar
Davidson, P.A. 1992 Swirling flow in an axisymmetric cavity of arbitrary profile, driven by a rotating magnetic field. J. Fluid Mech. 245, 669699.CrossRefGoogle Scholar
Gauthier, G., Gondret, P., Moisy, F. & Rabaud, M. 2002 Instabilities in the flow between co-and counter-rotating disks. J. Fluid Mech. 473, 121.CrossRefGoogle Scholar
Guermond, J.-L., Laguerre, R., Léorat, J. & Nore, C. 2007 An interior penalty Galerkin method for the MHD equations in heterogeneous domains. J. Comput. Phys. 221 (1), 349369.CrossRefGoogle Scholar
Guermond, J.-L., Laguerre, R., Léorat, J. & Nore, C. 2009 Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method. J. Comput. Phys. 228 (8), 27392757.CrossRefGoogle Scholar
Herreman, W., Bénard, S., Nore, C., Personnettaz, P., Cappanera, L. & Guermond, J.-L. 2020 Solutal buoyancy and electrovortex flow in liquid metal batteries. Phys. Rev. Fluids 5, 074501.CrossRefGoogle Scholar
Herreman, W., Nore, C., Cappanera, L. & Guermond, J.-L. 2015 Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79114.CrossRefGoogle Scholar
Herreman, W., Nore, C., Guermond, J.-L., Cappanera, L., Weber, N. & Horstmann, G.M. 2019 a Perturbation theory for metal pad roll instability in cylindrical reduction cells. J. Fluid Mech. 878, 598–546.CrossRefGoogle Scholar
Herreman, W., Nore, C., Ziebell Ramos, P., Cappanera, L., Guermond, J.-L. & Weber, N. 2019 b Numerical simulation of electrovortex flows in cylindrical fluid layers and liquid metal batteries. Phys. Rev. Fluids 4, 113702.CrossRefGoogle Scholar
Ivochkin, Y., Teplyakov, I., Guseva, A. & Vinogradov, D. 2015 Influence of the swirled electrovortex flow on the melting of eutectic alloy In-Ga-Sn. Magnetohydrodynamics 55 (2), 337344.CrossRefGoogle Scholar
Kelley, D.H. & Sadoway, D.R. 2014 Mixing in a liquid metal electrode. Phys. Fluids 26 (5), 057102.CrossRefGoogle Scholar
Khairulin, R.A., Stankus, S.V. & Abdullaev, R.N. 2017 Interdiffusion in lithium-lead melts. Thermophys. Aeromech. 24 (5), 773778.CrossRefGoogle Scholar
Khairulin, R.A., Abdullaev, R.N., Stankus, S.V., Agazhanov, A.S. & Savchenko, I.V. 2016 Volumetric properties of lithium-lead melts. Intl J. Thermophys. 38 (2), 23.CrossRefGoogle Scholar
Kharicha, A., Teplyakov, I., Ivochkin, Y.., Wu, M., Ludwig, A. & Guseva, A. 2015 Experimental and numerical analysis of free surface deformation in an electrically driven flow. Exp. Therm. Fluid Sci. 62, 192201.CrossRefGoogle Scholar
Köllner, T., Boeck, T. & Schumacher, J. 2017 Thermal Rayleigh–Marangoni convection in a three-layer liquid-metal-battery model. Phys. Rev. E 95, 053114.CrossRefGoogle Scholar
Millere, R.P., Sharamkin, V.I. & Shcherbinin, É.V. 1980 Effect of a longitudinal magnetic field on electrically driven rotational flow in a cylindrical vessel. Magnetohydrodynamics 16 (1), 6669.Google Scholar
Ning, X., Phadke, S., Chung, B., Yin, H., Burke, P. & Sadoway, D.R. 2015 Self-healing Li-Bi liquid metal battery for grid-scale energy storage. J. Power Sources 275, 370376.CrossRefGoogle Scholar
Personnettaz, P., Beckstein, P., Landgraf, S., Köllner, T., Nimtz, M., Weber, N. & Weier, T. 2018 Thermally driven convection in Li$||$Bi liquid metal batteries. J. Power Sources 401, 362374.CrossRefGoogle Scholar
Personnettaz, P., Landgraf, S., Nimtz, M., Weber, N. & Weier, T. 2019 Mass transport induced asymmetry in charge/discharge behavior of liquid metal batteries. Electrochem. Commun. 105, 106496.CrossRefGoogle Scholar
Shen, Y. & Zikanov, O. 2016 Thermal convection in a liquid metal battery. Theor. Comput. Fluid Dyn. 30 (4), 275294.CrossRefGoogle Scholar
Teplyakov, I.O., Vinogradov, D.A., Ivochkin, Y..P. & Klementyeva, I.B. 2018 Experimental and numerical investigation of the instability of the electrovortex flow in hemispherical container. Fluid Dyn. Res. 50 (5), 051415.CrossRefGoogle Scholar
Vinogradov, D.A., Teplyakov, I.O., Ivochkin, Y..P. & Kharicha, A. 2018 On the applicability of the electrodynamic approximation in the simulation of the electrovortex flow in the presence of an external magnetic field. J. Phys.: Conf. Ser. 1128, 012112.Google Scholar
Weber, N., Nimtz, M., Personnettaz, P., Salas, A. & Weier, T. 2018 Electromagnetically driven convection suitable for mass transfer enhancement in liquid metal batteries. Appl. Therm. Engng 143, 293301.CrossRefGoogle Scholar
Weber, W., Nimtz, M., Personnettaz, P., Weier, T. & Sadoway, D. 2020 Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow. J. Power Sources 1, 100004.CrossRefGoogle Scholar

Herreman et al. supplementary movie 1

Swirling electrovortex flow intensity in axisymmetric simulation of Figure 4, from time t=0 s to 12s with intervals of 0.1 s.

Download Herreman et al. supplementary movie 1(Video)
Video 1.9 MB

Herreman et al. supplementary movie 2

Molar fraction in axisymmetric simulation of Figure 4, from time t=0 s to 12s with intervals of 0.1 s.

Download Herreman et al. supplementary movie 2(Video)
Video 1 MB

Herreman et al. supplementary movie 3

Evolution of the molar fraction with time in the three-dimensional simulation reported in Figure 5(b). Successive snapshots are not uniformly sampled in time: snapshots 1 to 6 (t = 1s to 6 s, every 1s), snapshots 7 to 23 (t = 6.5s to 14.5s, every 0.5s), snapshots 24 to 35 (t = 14.75s to 17.5s, every 0.25s), snapshots 36 to 42 (t=17.625s to 18.375s, every 0.125s).

Download Herreman et al. supplementary movie 3(Video)
Video 3.3 MB

Herreman et al. supplementary movie 4

Evolution of the molar fraction with time in the three-dimensional simulation reported in Figure 6(a). Successive snapshots are not uniformly sampled in time: snapshots 1 to 6 (t = 1s to 6 s, every 1s), snapshots 7 to 23 (t = 6.5s to 14.5s, every 0.5s), snapshots 24 to 35 (t = 14.75s to 17.5s, every 0.25s), snapshots 36 to 42 (t=17.625s to 18.375s, every 0.125s).

Download Herreman et al. supplementary movie 4(Video)
Video 4 MB

Herreman et al. supplementary movie 5

Evolution of the flow intensity in the three-dimensional simulation of swirling electrovortex flow without solutal buoyany, reported in Figure 12. Time varies from t=15s to 20s, every 0.2s.

Download Herreman et al. supplementary movie 5(Video)
Video 1.5 MB