Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T13:29:31.751Z Has data issue: false hasContentIssue false

The effects of surface roughness on the flow past circular cylinders at high Reynolds numbers

Published online by Cambridge University Press:  20 April 2006

Y. Nakamura
Affiliation:
Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
Y. Tomonari
Affiliation:
Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan Present address: Department of Aeronautical Engineering, Ohita Institute of Technology, Ohita, Japan.

Abstract

Measurements of’ the mean-pressure distribution and the Strouhal number on a smooth circular cylinder, circular cylinders with distributed roughness, and circular cylinders with narrow roughness strips were made over a Reynolds-number range 4.0 × l04 to 1.7 × l06 in a uniform flow. A successful high-Reynolds-number (trans- critical) simulation for a smooth circular cylinder is obtained using a smooth circular cylinder with roughness strips. High-Reynolds-number simulation can only be obtained by roughness strips and not by distributed roughness. A similarity parameter correlating the pressure distributions on circular cylinders with distributed roughness in the supercritical range is presented. The same parameter can also be applicable to the drag coefficients of spheres with distributed roughness.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1968 J. Fluid Mech. 34, 625.
Achenbach, E. 1971 J. Fluid Mech. 46, 321.
Achenbach, E. 1974 J. Fluid Mech. 65, 113.
Achenbach, E. 1977 Int. J. Heat Mass Transfer 20, 359.
Allen, H. J. & Vincenti, W. G. 1944 NACA Tech. Rep. no. 782.
Fage, A. & Warsap, J. H. 1929 Aero Res. Comm. no. 1283.
Farell, C. 1981 Proc. A.S.C.E.: J. Engng Mech. 107 (EM3), 565.
Groehn, H. G. 1974 Über den Einfluß von Stolperdrähten auf die Umströmung eines Kreiszylinders. Ph.D. dissertation, Technical University Berlin.
Güven, O., Farell, C. & Patel, V. C. 1980 J. Fluid Mech. 98, 673.
Güven, O., Patel, V. C. & Farell, C. 1977 Trans. A.S.M.E. I: J. Fluids Engng 99, 470.
Jones, G. W., Cincotta, J. J. & Walker, R. W. 1969 NASA Tech. Rep. R-300.
Maxworthy, T. 1969 Trans. A.S.M.E. E: J. Appl. Mech. 36, 598.
Nakamura, Y. 1975 In Proc. 4th Int. Conf. Wind Effects on Buildings and Structures, Heathrow (ed. K. J. Eaton), p. 359. Cambridge University Press.
Nakamura, Y. & Tomonari, Y. 1981 Aero Q. 32, 153.
Nikuradse, J. 1933 Forsch. Arb. Ing.-Wes. no. 361.
Okajima, A. & Nakamura, Y. 1973 Bull. Res. Inst. Appl. Mech., Kyushu Univ. 40, 387 (in Japanese).
Roshko, A. 1961 J. Fluid Mech. 10, 345.
Roshko, A. 1970 In Proc. U.S.–Japan Research Seminar on Wind Loads on Structures, Honolulu (ed. A. N. Chiu), p. 87. University of Hawaii.
Szechenyi, E. 1975 J. Fluid Mech. 70, 529.
Tani, I. 1964 In Preprints of IUTAM Symp. on Concentrated Vortex Motions in Fluids (org. D. Küchemann) held at the University of Michigan, Ann Arbor, Michigan, 6–11 July.
Tani, I. 1967 J. Japan Soc. Aero. Sci. 15, 426 (in Japanese).