Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T14:13:13.321Z Has data issue: false hasContentIssue false

Effects of streamwise rotation on helicity and vortex in channel turbulence

Published online by Cambridge University Press:  08 February 2024

Running Hu
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Xinliang Li
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Changping Yu*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: [email protected]

Abstract

Helicity plays a key role in the evolution of vortex structures and turbulent dynamics. The helicity dynamics and vortex structures in streamwise-rotating channel turbulence are discussed in this paper using the helicity budget equation and the differentiated second-order structure function equation of helicity. Generally, rotation and Reynolds numbers exhibit opposing effects on the interscale helicity dynamics and the vortices. Under the buffer layer, the positions of the helicity peaks are proportional to the ratio between the Reynolds and rotation numbers. The mechanism is related to the opposing effects of convection and rotation. Rotation directly affects the helicity balance through the Coriolis term and corresponding pressure term. In the buffer layer, the scale helicity is negative at small scales but positive at large scales, which is mainly induced by the spatial effects (the production and the spatial turbulent convection) but reduced by interscale cascades. Examination of structures reveals the close association between scale helicity and streaks, with streak lift angles exhibiting an increase with rotation and a decrease with Reynolds numbers. In the log-law layer, the Coriolis terms and corresponding pressure terms are proportional to the rotation numbers but remain independent of the Reynolds numbers. The negative scale helicity is forward cascaded towards small scales. Generally, spanwise vortices in the log-law layer are related to sweep events and forward cascades. Our findings indicate that these spanwise vortices are suppressed by rotation but recover with increasing Reynolds numbers, aligning with the effects observed in the scale helicity balance.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.Google Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.Google Scholar
Baj, P., Portela, F.A. & Carter, D.W. 2022 On the simultaneous cascades of energy, helicity, and enstrophy in incompressible homogeneous turbulence. J. Fluid Mech. 952, A20.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Lanotte, A., Toschi, F. & Vergassola, M. 2003 The decay of homogeneous anisotropic turbulence. Phys. Fluids 15 (8), 21052112.CrossRefGoogle Scholar
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.Google Scholar
Charkrit, S., Shrestha, P. & Liu, C. 2020 Liutex core line and POD analysis on hairpin vortex formation in natural flow transition. J. Hydrodyn. 32 (6), 11091121.Google Scholar
Chen, Q., Chen, S. & Eyink, G.L. 2003 a The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15 (2), 361374.CrossRefGoogle Scholar
Chen, Q., Chen, S., Eyink, G.L. & Holm, D.D. 2003 b Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90 (21), 214503.Google Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J. Fluid Mech. 715, 436451.Google Scholar
Cimarelli, A., De Angelis, E., Jimenez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417436.Google Scholar
Cimarelli, A., De Angelis, E., Schlatter, P., Brethouwer, G., Talamelli, A. & Casciola, C.M. 2015 Sources and fluxes of scale energy in the overlap layer of wall turbulence. J. Fluid Mech. 771, 407423.Google Scholar
Dai, Y.-J., Huang, W.-X. & Xu, C.-X. 2016 Effects of Taylor–Görtler vortices on turbulent flows in a spanwise-rotating channel. Phys. Fluids 28 (11), 115104.Google Scholar
Dai, Y.-J., Huang, W.-X. & Xu, C.-X. 2019 Coherent structures in streamwise rotating channel flow. Phys. Fluids 31 (2), 021204.Google Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R.A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87109.Google Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davidson, P.A. 2016 Introduction to Magnetohydrodynamics, 2nd edn. Cambridge University Press.Google Scholar
Gatti, D., Chiarini, A., Cimarelli, A. & Quadrio, M. 2020 Structure function tensor equations in inhomogeneous turbulence. J. Fluid Mech. 898, A5.CrossRefGoogle Scholar
Hiejima, T. 2020 Helicity effects on inviscid instability in Batchelor vortices. J. Fluid Mech. 897, A37.Google Scholar
Hu, R., Li, X. & Yu, C. 2022 a Effects of the Coriolis force in inhomogeneous rotating turbulence. Phys. Fluids 34 (3), 035108.Google Scholar
Hu, R., Li, X. & Yu, C. 2022 b Transfers of energy and helicity in helical rotating turbulence. J. Fluid Mech. 946, A19.Google Scholar
Hu, R., Li, X. & Yu, C. 2023 Multiscale dynamics in streamwise-rotating channel turbulence. J. Fluid. Mech. 972, A14.Google Scholar
Irvine, W.T.M. 2018 Moreau's hydrodynamic helicity and the life of vortex knots and links. Comptes Rendus Mécanique, 346 (3), 170174.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jing, Z. & Ducoin, A. 2020 Direct numerical simulation and stability analysis of the transitional boundary layer on a marine propeller blade. Phys. Fluids 32 (12), 124102.Google Scholar
Johnston, J.P., Halleent, R.M. & Lezius, D.K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56 (3), 533.Google Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Kristoffersen, R. & Andersson, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163197.Google Scholar
Liu, Y., Tang, Y., Scillitoe, A.D. & Tucker, P.G. 2020 Modification of shear stress transport turbulence model using helicity for predicting corner separation flow in a linear compressor cascade. Trans. ASME J. Turbomach. 142 (2), 021004.Google Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.Google Scholar
Masuda, S., Fukuda, S. & Nagata, M. 2008 Instabilities of plane Poiseuille flow with a streamwise system rotation. J. Fluid Mech. 603, 189206.Google Scholar
Mininni, P.D. & Pouquet, A. 2009 Helicity cascades in rotating turbulence. Phys. Rev. E 79 (2), 026304.CrossRefGoogle ScholarPubMed
Mininni, P.D. & Pouquet, A. 2010 Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22 (3), 035105.Google Scholar
Mininni, P.D., Rosenberg, D. & Pouquet, A. 2012 Isotropization at small scales of rotating helically driven turbulence. J. Fluid Mech. 699, 263279.Google Scholar
Moffatt, H.K. & Tsinober, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24 (1), 281312.Google Scholar
Moin, P., Leonard, A. & Kim, J. 1986 Evolution of a curved vortex filament into a vortex ring. Phys. Fluids 29 (4), 955963.Google Scholar
Mollicone, J.P., Battista, F., Gualtieri, P. & Casciola, C.M. 2018 Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. J. Fluid Mech. 841, 10121039.Google Scholar
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.Google Scholar
Oberlack, M., Cabot, W., Reif, B.A.P. & Weller, T. 2006 Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation. J. Fluid Mech. 562, 383403.Google Scholar
Pelz, R.B., Yakhot, V., Orszag, S.A., Shtilman, L. & Levich, E. 1985 Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54 (23), 2505.Google Scholar
Polifke, W. & Shtilman, L. 1989 The dynamics of helical decaying turbulence. Phys. Fluids A: Fluid Dyn. 1 (12), 20252033.Google Scholar
Pouquet, A. & Yokoi, N. 2022 Helical fluid and MHD turbulence: a brief review. Philos. Trans. R. Soc. A 380 (2219), 20210087.Google Scholar
Povitsky, A. 2017 Three-dimensional flow with elevated helicity in driven cavity by parallel walls moving in perpendicular directions. Phys. Fluids 29 (8), 083601.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Teimurazov, A.S., Stepanov, R.A., Verma, M.K., Barman, S., Kumar, A. & Sadhukhan, S. 2018 Direct numerical simulation of homogeneous isotropic helical turbulence with the TARANG code. J. Appl. Mech. Tech. Phys. 59 (7), 12791287.Google Scholar
Tsinober, A. 2019 Essence of Turbulence as a Physical Phenomenon. Springer.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A: Fluid Dyn. 4 (2), 350363.Google Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A: Fluid Dyn. 5 (3), 677685.Google Scholar
Wang, Y., Huang, W. & Xu, C. 2015 On hairpin vortex generation from near-wall streamwise vortices. Acta Mechanica Sin. 31 (2), 139152.Google Scholar
Weiss, A., Gardner, A.D., Schwermer, T., Klein, C. & Raffel, M. 2019 On the effect of rotational forces on rotor blade boundary-layer transition. AIAA J. 57 (1), 252266.Google Scholar
Xia, Z., Shi, Y. & Chen, S. 2016 Direct numerical simulation of turbulent channel flow with spanwise rotation. J. Fluid Mech. 788, 4256.CrossRefGoogle Scholar
Yan, Z., Li, X. & Yu, C. 2022 Helicity budget in turbulent channel flows with streamwise rotation. Phys. Fluids 34 (6), 065105.Google Scholar
Yang, Y.T., Su, W.D. & Wu, J.Z. 2010 Helical-wave decomposition and applications to channel turbulence with streamwise rotation. J. Fluid Mech. 662, 91122.Google Scholar
Yang, Z., Deng, B.Q., Wang, B.C. & Shen, L. 2018 Letter: the effects of streamwise system rotation on pressure fluctuations in a turbulent channel flow. Phys. Fluids 30 (9), 17.Google Scholar
Yang, Z., Deng, B.-Q., Wang, B.-C. & Shen, L. 2020 a On the self-constraint mechanism of the cross-stream secondary flow in a streamwise-rotating channel. Phys. Fluids 32 (10), 105115.Google Scholar
Yang, Z., Deng, B.-Q., Wang, B.-C. & Shen, L. 2020 b Sustaining mechanism of Taylor–Görtler-like vortices in a streamwise-rotating channel flow. Phys. Rev. Fluids 5 (4), 044601.Google Scholar
Yang, Z. & Wang, B.-C. 2018 Capturing Taylor–Görtler vortices in a streamwise-rotating channel at very high rotation numbers. J. Fluid Mech. 838, 658689.Google Scholar
Yu, C., Hu, R., Yan, Z. & Li, X. 2022 Helicity distributions and transfer in turbulent channel flows with streamwise rotation. J. Fluid Mech. 940, A18.Google Scholar