Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T22:36:23.617Z Has data issue: false hasContentIssue false

Effects of radiative heat transfer on the structure of turbulent supersonic channel flow

Published online by Cambridge University Press:  15 April 2011

S. GHOSH
Affiliation:
Lehrstuhl für Aerodynamik, TU München, Boltzmannstr 15, 85748 Garching, Germany
R. FRIEDRICH*
Affiliation:
Lehrstuhl für Aerodynamik, TU München, Boltzmannstr 15, 85748 Garching, Germany
M. PFITZNER
Affiliation:
Institut für Thermodynamik, Universität der Bundeswehr München Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
CHR. STEMMER
Affiliation:
Lehrstuhl für Aerodynamik, TU München, Boltzmannstr 15, 85748 Garching, Germany
B. CUENOT
Affiliation:
CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse, France
M. EL HAFI
Affiliation:
Laboratoire de Génie des Procédés des Solides Divisés, Ecole des Mines d'Albi Carmaux, 81013 Albi, France
*
Email address for correspondence: [email protected]

Abstract

The interaction between turbulence in a minimal supersonic channel and radiative heat transfer is studied using large-eddy simulation. The working fluid is pure water vapour with temperature-dependent specific heats and molecular transport coefficients. Its line spectra properties are represented with a statistical narrow-band correlated-k model. A grey gas model is also tested. The parallel no-slip channel walls are treated as black surfaces concerning thermal radiation and are kept at a constant temperature of 1000 K. Simulations have been performed for different optical thicknesses (based on the Planck mean absorption coefficient) and different Mach numbers. Results for the mean flow variables, Reynolds stresses and certain terms of their transport equations indicate that thermal radiation effects counteract compressibility (Mach number) effects. An analysis of the total energy balance reveals the importance of radiative heat transfer, compared to the turbulent and mean molecular heat transport.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, N. A. & Leonard, A. 1999 Deconvolution of subgrid scales for the simulation of shock-turbulence interaction. In Direct and Large-Eddy Simulation III (ed. Voke, P., Sandham, N. D. & Kleiser, L.), p. 201, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Amaya, J., Cabrit, O., Poitou, D., Cuenot, B. & Hafi, M. El 2010 Unsteady coupling of Navier-Stokes and radiative heat transfer solvers applied to an anisothermal multi-component turbulent channel flow. J. Quant. Spectrosc. Radiat. Transfer 111, 295301.CrossRefGoogle Scholar
Coelho, P. J. 2007 Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog. Energy Combustion Sci. 33, 311383.CrossRefGoogle Scholar
Coelho, P. J. 2009 Approximate solutions of the filtered radiative transfer equation in large-eddy simulations of turbulent reactive flows. Combust. Flame 156, 10991110.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Ern, A. & Giovangigli, V. 1995 Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105116.CrossRefGoogle Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.CrossRefGoogle Scholar
Gardiner, W. 1984 Combustion Chemistry. Springer.CrossRefGoogle Scholar
Ghosh, S., Sesterhenn, J. & Friedrich, R. 2006 DNS and LES of compressible turbulent pipe flow with isothermal wall. In Direct and Large Eddy Simulation VI (ed. Lamballais, E., Friedrich, R., Guerts, B. J. & Métais, O.) pp. 721728. Springer.CrossRefGoogle Scholar
Ghosh, S., Sesterhenn, J. & Friedrich, R. 2008 Large-eddy simulation of supersonic turbulent flow in axisymmetric nozzles and diffusers. Intl J. Heat Fluid flow pp. 579–590.CrossRefGoogle Scholar
Gupta, A., Modest, M. F. & Haworth, D. C. 2009 Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow. J. Heat Transfer 131, 061704.CrossRefGoogle Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Jensen, K., Ripoll, J-F., Wray, A., Joseph, D. & Hafi, M. El 2007 On various modelling approaches to radiative heat transfer in pool fires. Combust. Flame 148, 263279.CrossRefGoogle Scholar
Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Joseph, D., Hafi, M. El, Fournier, R. & Cuenot, B. 2005 Comparison of three spatial differencing schemes in discrete ordinates method using three-dimensional unstructured grids. Intl J. Therm. Sci. 44, 851864.CrossRefGoogle Scholar
Lechner, R., Sesterhenn, J. & Friedrich, R. 2001 Turbulent supersonic channel flow. J. Turbul. 2, 125.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.CrossRefGoogle Scholar
Liu, F., Smallwood, G. J. & Gulder, O. L. 2000 Application of the statistical narrow-band correlated-k model to low resolution spectral intensity and radiative heat transfer calculations- effects of the quadrature scheme. Intl J. Heat Mass Transfer 43, 31193135.CrossRefGoogle Scholar
Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J. & Friedrich, R. 2003 An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15, 22792289.CrossRefGoogle Scholar
Modest, M. F. 2003 Radiative Heat Transfer. 2nd edn. Academic Press.CrossRefGoogle Scholar
Poitou, D., Amaya, J., Chandra, B. S., David, J., Hafi, M. El & Cuenot, B. 2009 Validity limits for the global model FS-SNBcK for combustion applications. In Proceedings of Eurotherm83 – Computational Thermal Radiation in Participating Media III, Lisbon, Portugal.Google Scholar
Sesterhenn, J. 2001 A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes. Comput. Fluids 30, 3767.CrossRefGoogle Scholar
Soufiani, A. & Taine, J. 1997 High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-k model for H2O and CO2. Intl J. Heat Mass Transfer 40, 987991.CrossRefGoogle Scholar
Stolz, S. 2000 Large eddy simulation of complex shear flows using an approximate deconvolution model. PhD thesis, ETH, Zurich.Google Scholar
Stolz, S. & Adams, N. A. 1999 An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 16991701.CrossRefGoogle Scholar
Stolz, S., Adams, N. A. & Kleiser, L. 2001 An approximate deconvolution model for large-eddy simulation with application to incompressible flows. Phys. Fluids 13, 9971015.CrossRefGoogle Scholar
Viskanta, R. 1998 Overview of convection and radiation in high temperature gas flows. Intl J. Engng Sci. 36, 16771699.CrossRefGoogle Scholar
Williamson, J. K. 1980 Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 4856.CrossRefGoogle Scholar
Wu, Y., Haworth, D. C., Modest, M. F. & Cuenot, B. 2005 Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems. Proc. Combust. Inst. 30, 259266.CrossRefGoogle Scholar