Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T10:00:00.316Z Has data issue: false hasContentIssue false

Effects of mean shear on the local turbulent entrainment process

Published online by Cambridge University Press:  14 August 2013

Marc Wolf*
Affiliation:
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
M. Holzner
Affiliation:
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
B. Lüthi
Affiliation:
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
D. Krug
Affiliation:
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
W. Kinzelbach
Affiliation:
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
A. Tsinober
Affiliation:
School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
*
Email address for correspondence: [email protected]

Abstract

We report on effects of mean shear on the turbulent entrainment process, focusing in particular on their relation to small-scale processes in the proximity of the turbulent/non-turbulent interface (TNTI). Three-dimensional particle tracking velocimetry (3D-PTV) measurements of an axisymmetric jet are compared to data from a direct numerical simulation (DNS) of a zero-mean-shear (ZMS) flow. First, conditional statistics relative to the interface position are investigated in a pseudo-Eulerian view (i.e. in a fixed frame relative to the interface position) and in a Lagrangian view. We find that in a pseudo-Eulerian frame of reference, both vorticity fluctuations and mean shear contribute to the vorticity jump at the boundary between irrotational and turbulent regions. In contrast, the Lagrangian evolution of enstrophy along trajectories crossing the entrainment interface is almost exclusively dominated by vorticity fluctuations, at least during the first Kolmogorov time scales after passing the interface. A mapping between distance to the instantaneous interface versus conditional time along the trajectory shows that entraining particles remain initially close to the TNTI and therefore attain lower average enstrophy values. The ratio between the rate of change of enstrophy in the two frames of references defines the local entrainment velocity ${v}_{n} = - (\mathrm{D} {\omega }^{2} / \mathrm{D} t)/ (\partial {\omega }^{2} / \partial {\hat {x} }_{n} )$, where ${\omega }^{2} $ is enstrophy and ${\hat {x} }_{n} $ is the coordinate normal to the TNTI. The quantity ${v}_{n} $ is decomposed into mean and fluctuating components and it is found that mean shear enhances the local entrainment velocity via inviscid and viscous effects. Further, the analysis substantiates that for all investigated flow configurations the local entrainment velocity depends considerably on the geometrical shape of the interface. Depending on the surface shape, different small-scale mechanisms are dominant for the local entrainment process, i.e. viscous effects for convex shapes and vortex stretching for concave shapes, looking from the turbulent region towards the convoluted boundary. Moreover, turbulent fluctuations display a stronger dependence on the shape of the interface than mean shear effects.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Coles, D. 1962 Interfaces and intermittency in turbulent shear flow. Mécanique de la Turbulence, CNRS 108, 229248.Google Scholar
Corrsin, S. & Kistler, A. 1954 The free-stream boundaries of turbulent flows. NACA, TN-3133, TR-1244, pp. 1033–1064.Google Scholar
Dahm, W. & Dimotakis, P. 1990 Mixing at large Schmidt number in the self-similar far field of turbulent jets. J. Fluid Mech. 217, 299330.CrossRefGoogle Scholar
Dimotakis, P. 2005 Turbulent mixing. J. Fluid Mech. 37, 329356.CrossRefGoogle Scholar
Dopazo, C. 2006 Iso-scalar surfaces, mixing and reaction in turbulent flows. C. R. Mécanique 334, 483492.CrossRefGoogle Scholar
Dopazo, C., Martin, J. & Hierro, J. 2007 Local geometry of isoscalar surfaces. Phys. Rev. E 76 (5), 111, 056316.CrossRefGoogle ScholarPubMed
Ferrey, P. & Aupoix, B. 2006 Behaviour of turbulence models near a turbulent/non-turbulent interface revisited. Intl J. Heat Fluid Flow 27 (5), 831837.CrossRefGoogle Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2007 Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids 42 (6), 923939.CrossRefGoogle Scholar
Govindarajan, R. 2004 Universal behaviour of entrainment due to coherent structures in turbulent shear flow. Phys. Rev. Lett. 88, 134503.Google Scholar
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys. Fluids 19, 071702.CrossRefGoogle Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 14, 134503.CrossRefGoogle ScholarPubMed
Holzner, M., Lüthi, B., Tsinober, A. & Kinzelbach, W. 2009 Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J. Fluid Mech. 639, 153165.CrossRefGoogle Scholar
Hoyer, K., Holzner, M., Lüthi, B., Guala, M., Liberzon, A. & Kinzelbach, W. 2005 3D scanning particle tracking velocimetry. Exp. Fluids 39 (5), 923934.CrossRefGoogle Scholar
Hunt, J. C. R., Eames, I., da Silva, C. B. & Westerweel, J. 2011 Interfaces and inhomogeneous turbulence. Phil. Trans. R. Soc. A 369 (1039), 811832.CrossRefGoogle ScholarPubMed
Hunt, J. C. R., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 449519.CrossRefGoogle Scholar
Hunt, J. C. R., Eames, I. & Westerweel, J. 2008 Vortical interactions with interfacial shear layer. In Proceedings of IUTAM Conference on Computational Physics and New Perspectives in Turbulence, pp. 331338. Springer.Google Scholar
Hussein, N. J. C., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.CrossRefGoogle Scholar
Liberzon, A., Lüthi, B., Holzner, M., Tsinober, A., Ott, S., Berg, J. & Mann, J. 2012 On the structure of acceleration in turbulence. Physica D 241, 208215.CrossRefGoogle Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Maas, H. G., Gruen, A. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional flows. Part 1. Photogrammetric determination of particle coordinates. Exp. Fluids 15, 133146.CrossRefGoogle Scholar
Magid, E., Soldea, O. & Rivlin, E. 2007 A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data. Comput. Vis. Image Underst. 107, 139159.CrossRefGoogle Scholar
Mullin, J. A. & Dahm, W. J. 2006 Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. Part 2. Experimental results. Phys. Fluids 18, 035102.Google Scholar
Nikitin, N. 2006 Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys. 217 (2), 759781.CrossRefGoogle Scholar
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24, 055108.CrossRefGoogle Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Ricou, F. & Spalding, D. 1961 Measurements of entrainment by axisymmetric turbulent jets. J. Fluid Mech. 11, 2132.CrossRefGoogle Scholar
da Silva, C. B. 2009 The behaviour of subgrid-scale models near the turbulent/nonturbulent interface in jets. Phys. Fluids 21, 081702.CrossRefGoogle Scholar
da Silva, C. B. & Pereira, C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 118, 055101.CrossRefGoogle Scholar
da Silva, C. B., dos Reis, R. J. N. & Pereira, J. C. F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.CrossRefGoogle Scholar
da Silva, C. B. & Taveira, R. R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22, 121702.CrossRefGoogle Scholar
Sreenivasan, K. R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421 (1860), 79108.Google Scholar
Stokely, E. & Wu, S. Y. 1992 Surface parametrization and curvature measurement of arbitrary 3-D objects: five practical methods. IEEE Trans. Pattern Anal. Mach. Intell. 14 (8), 833840.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tritton, D. J. 1988 Physical Fluid Dynamics, 2nd edn. Clarendon.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer.CrossRefGoogle Scholar
Westerweel, J. 2005 Mechanics of the turbulent–nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501.CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J. & Hunt, J. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
Willneff, J. & Gruen, A. 2002 A new spatio-temporal matching algorithm for 3D-particle tracking velocimetry. In The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.Google Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110 Attached publisher’s note: Erratum: ‘Investigations on the local entrainment velocity in a turbulent jet’ [Phys. Fluids 24, 105110 (2012)], Phys. Fluids 25, 019901 (2013).CrossRefGoogle Scholar
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38 (3), 577612.CrossRefGoogle Scholar
Xu, G. & Antonia, R. A. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677683.CrossRefGoogle Scholar