No CrossRef data available.
Article contents
Effects of large density variations on near-wall turbulence and heat transfer in channel flow at supercritical pressure
Published online by Cambridge University Press: 24 March 2025
Abstract
The real-fluid effect induced by large density variation at supercritical pressure (SCP) modulates the turbulent dynamics and heat transfer, and poses challenges to existing turbulence models that are based on ideal-gas conditions. This study conducts direct numerical simulations of fully developed channel flows at SCP, with the upper and lower channel walls being isothermally heated and cooled, respectively. Emphasis is placed on examining the effects of various levels of density variations on near-wall turbulence as well as turbulent heat transfer by changing wall temperatures. The results show that the density fluctuation significantly impacts both first-order and second-order turbulence statistics near the heated wall owing to the close vicinity of pseudo-boiling point. Such real-fluid impact increases substantially with increasing density ratio, and tends to weaken the turbulent kinetic energy by damping turbulence production, while simultaneously inducing an additional turbulent mass flux that partially offsets this reduction. Detailed quadrant analysis reveals that the ‘ejection’ events dominate diverse effects of density fluctuation on Reynolds shear stresses, with density fluctuation contributing positively on the cooled wall side, and negatively on the heated wall side. Regarding the turbulent heat transfer, density fluctuation enhances the enthalpy–pressure–gradient correlation, tending to weaken the turbulent heat flux, which is slightly compensated by additional terms induced by density fluctuations. The overall negative contribution of density fluctuation to turbulent heat flux stems primarily from ‘hot ejection’ motions. Instantaneous flow characteristics provide additional support for these findings. Additionally, the mechanisms by which density fluctuations affect Reynolds shear stress and turbulent heat flux could also be extended to the skin friction coefficient and Nusselt number, respectively.
JFM classification
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press