Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:36:30.424Z Has data issue: true hasContentIssue false

Effects of imperfect spatial resolution on measurements of wall-bounded turbulentbx shear flows

Published online by Cambridge University Press:  20 April 2006

Arne V. Johansson
Affiliation:
Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden
P. Henrik Alfredsson
Affiliation:
Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden

Abstract

The effects of imperfect spatial resolution on hot-film and hot-wire measurements of wall-bounded turbulent shear flows were studied. Two hot-film probes of different length were used for measurements of fully developed turbulent channel flow in a water tunnel. In the near-wall region significant effects of spanwise spatial averaging due to finite probe size were found for a probe 32 viscous units long. The maximum turbulence intensity attained a 10% lower value than that for a probe about half as long, and the zero-crossing of the skewness factor was shifted away from the wall. This could be attributed to spatial averaging of narrow low-speed regions. Results for different Reynolds numbers, but with the same sensor length in viscous units, showed that Reynolds-number effects are small, and that much of the reported discrepancies for turbulence measurements in the near-wall region can be ascribed to effects of imperfect spatial resolution. Also the number of events detected with the variable-interval time-averaging (VITA) technique was found to depend strongly on the sensor length, especially for events with short duration.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatia, J. C., Durst, F. & Jovanovic, J. 1982 J. Fluid Mech. 122, 411.
Blackwelder, R. F. 1981 In Methods of Experimental Physics, vol. 18A (ed. R. J. Emrich), p. 273.
Blackwelder, R. F. & Haritonidis, J. H. 1980 Bull. Am. Phys. Soc. 25, 1094.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Bremhorst, K. 1972 In Trans. on Instrumentation and Measurement, IM-21, 244.
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 J. Fluid Mech. 63, 209.
Coles, D. E. 1968 In Proc. AFOSR-IFP-Stanford Conf. on Computation of Turbulent Boundary Layers (ed. D. E. Coles & E. A. Hirst), vol. 2, p. 1.
Coles, D. E. 1978 In Proc. Workshop on Coherent Structures of Turbulent Boundary Layers, Lehigh Univ. (ed. C. R. Smith & D. E. Abbott), p. 462.
Comte-Bellot, G. 1965 Publ. Sci. Tech. de l’ Air no. 419.
Comte-Bellot, G. 1976 Ann. Rev. Fluid Mech. 8, 209.
Corcos, G. M. 1963 J. Acoust. Soc. Am. 35, 192.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corrsin, S. & Kovasznay, L. S. G. 1949 Phys. Rev. 75, 1954.
Eckelmann, H. 1974 J. Fluid Mech. 65, 439.
Frenkiel, F. N. 1949 Phys. Rev. 75, 1263.
Frenkiel, F. N. 1954 Aero. Q. 5, 1.
Frenkiel, F. N. & Klebanoff, P. S. 1971 J. Fluid Mech. 48, 183.
Freymuth, P. 1978 TSI Q. 4 (2), 2.
Freymuth, P. & Fingerson, L. M. 1977 TSI Q. 3 (4), 5.
Hussain, A. K. M. F. & Reynolds, W. C. 1970 Dept Mech. Engng, Stanford Univ., Rep. FM-6.
Johansson, A. V. & Alfredsson, P. H. 1981 R. Inst. Tech., Stockholm, Rep. TRITA-MEK-81-04 (ISSN 0348-467 X).
Johansson, A. V. & Alfredsson, P. H. 1982 J. Fluid Mech. 122, 295.
Karlsson, R. 1980 Dept. Appl. Thermo and Fluid Dynamics, Chalmers Univ. Tech., Gothenburg, Doctoral thesis.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Klebanoff, P. S. 1955 NACA Rep. 1247.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kreplin, H.-P., 1976 Mitt. MPIf. Strömungsforschung u. der AVA, Göttingen, no. 63.
Laufer, J. 1951 NACA Rep. 1053.
Laufer, J. 1954 NACA Rep. 1174.
Moin, P. & Kim, J. 1982 J. Fluid Mech. 118, 341.
Murlis, J., Tsai, H. M. & Bradshaw, P. 1982 J. Fluid Mech. 122, 13.
Purtell, L. P., Klebanoff, P. S. & Buckley, F. T. 1981 Phys. Fluids 24, 802.
Roberts, J. B. 1973 Aero. J. 77, 406.
Schewe, G. 1979 Mitt. MPIf. Strömungsforschung u. der AVA, Göttingen, no. 68A, ISSN 0374810.
Uberoi, M. S. & Kovasznay, L. S. G. 1953 Q. Appl. Maths 10, 375.
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 J. Fluid Mech. 83, 673.
Willmarth, W. W. 1975 Ann. Rev. Fluid Mech. 7, 13.
Wills, J. A. B. 1962 J. Fluid Mech. 12, 388.
Wyngaard, J. C. 1968 J. Phys. E: Sci. Instrum. 1, 1105.
Wyngaard, J. C. 1969 J. Phys. E: Sci. Instrum. 2, 983.
Wyngaard, J. C. 1971 Phys. Fluids 14, 2052.
ZariČ, Z. 1972 Adv. Heat Transfer 8, 285.