Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T17:40:05.148Z Has data issue: false hasContentIssue false

Effects of hydrogen impurities on shock structure and stability in ionizing monatomic gases. Part 1. Argon

Published online by Cambridge University Press:  12 April 2006

I. I. Glass
Affiliation:
Institute for Aerospace Studies, University of Toronto, Ontario, Canada M3H 5T6
W. S. Liu
Affiliation:
Institute for Aerospace Studies, University of Toronto, Ontario, Canada M3H 5T6

Abstract

At shock Mach numbers Ms ∼ 16 in pure argon with initial pressures p0 ∼ 5 torr and final electron number densities ne ∼ 1017 cm−3, the translational shock front in a 10 x 18 cm hypervelocity shock tube develops sinusoidal instabilities which affect the entire shock structure including the ionization relaxation region, the electron-cascade front and the final quasi-equilibrium state. By adding a small amount of hydrogen (∼ 0·5% of the initial pressure), the entire flow is stabilized. However, the relaxation length for ionization is drastically reduced to about one-third of its pure-gas value. Using the familiar two-step collisional model coupled with radiation-energy loss and the appropriate chemical reactions, it was possible to deduce from dual-wavelength interferometric measurements a precise value for the argon-argon collisional excitation cross-section SAr Ar* = 1·0 x 10−19 cm2/eV with or without the presence of a hydrogen impurity. The reason for the success of hydrogen, and not other gases, in bringing about stabilized shock waves is not clear. It was also found that the electron-cascade front approached the translational-shock front near the shock-tube wall. This effect appears to be independent of the wall material and is not affected by the evolution of adsorbed water vapour from the walls or by water vapour added deliberately to the test gas. The sinusoidal instabilities investigated here may offer some important clues to the abatement of instabilities that lead to detonation and explosions.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleton, J. P. & Bray, K. N. C. 1964 J. Fluid Mech. 20, 659.
Belozerov, A. N. & Measures, R. M. 1969 J. Fluid Mech. 36, 695.
Brimelow, P. I. 1974 Univ. Toronto, Inst. Aerospace Studies Tech. Rep. UTIAS 187.
Bristow, M. P. F. & Glass, I. I. 1972 Phys. Fluids 15, 2066.
Chang, C. T. 1966 Proc. 7th Int. Conf. Phenomena in Ionized Gases, vol. 2, pp. 742756. Belgrade: Gradevinska Knjiga Publishing House.
Cowperthwaite, M. 1968 J. Franklin Inst. 285, 275.
Devoto, R. S. 1967 Phys. Fluids 10, 354.
Enomoto, Y. 1973 J. Phys. Soc. Japan 35, 1228.
Fowles, G. R. 1976 Phys. Fluids 19, 227.
Frost, L. S. & Phelps, A. V. 1964 Phys. Rev. 136, 1538.
Glass, I. I., Liu, W. S. & Tang, F. C. 1977 Can. J. Phys. 56, 1269.
Griffiths, R. W., Sandeman, R. J. & Hornung, H. G. 1976 J. Phys. D. Appl. Phys. 9, 1681.
Harwell, K. E. & Jahn, R. C. 1964 Phys. Fluids 7, 214, 1554.
Hoffert, M. I. & Lien, H. 1967 Phys. Fluids 10, 1769.
Hollenbach, P. J. & Salpeter, E. E. 1969 J. Chem. Phys. 50, 4157.
Horn, K. P. 1966 Stanford Univ. Ref. SUDAAR 268.
Horn, K. P., Wong, H. & Bershader, D. 1967 J. Plasma Phys. 1, 157.
Jaffrin, M. Y. 1965 Phys. Fluids 8, 606.
Kaminoto, G. & Teshima, K. 1972 Dept. Aero. Engng, Kyoto Univ. Current Paper no. 33.
Kamimoto, G., Teshima, K. & Nishimura, N. 1972 Dept. Aero. Engng, Kyoto Univ. Current Paper no. 36.
Kelly, A. J. 1966 J. Chem. Phys. 45, 1723.
Mcchesney, M. & AL-ATTAR, Z. 1965 J. Quant. Spectrosc. Radiat. Transfer 5, 553.
Mclaren, T. I. & Hobson, R. M. 1968 Phys. Fluids 11, 2152.
Meiners, D. & Weiss, C. O. 1976 J. Quant. Spectrosc. Radiat. Transfer 16, 273.
Merilo, M. & Morgan, E. J. 1970 J. Chem. Phys. 52, 2192.
Morgan, E. J. & Morrison, R. D. 1965 Phys. Fluids 8, 1608.
Oettinger, P. E. & Bershader, D. 1967 A.I.A.A. J. 5, 1625.
Petschek, H. & Byron, S. 1957 Ann. Phys. 1, 270.
Pomerantz, J. 1961 J. Quant. Spectrosc. Radiat. Transfer 1, 185.
Rusakov, M. M. 1975 Heat Phys. High Temp. 13, 20.
Schultz-Grunow, F. 1975 Z. Flugwiss. 23, 51.
Schultz-Guide, E. 1970 Z. Phys. 230, 449.
Sherman, F. S. 1960 J. Fluid Mech. 8, 465.
Tang, F. C. 1977 M.A. Sc. thesis, Institute of Aerospace Studies, University of Toronto.
Tuttle, L. & Satterly, J. 1925 The Theory of Measurements. Longmans.
Whitten, B. T. 1977 Ph.D. thesis, Institute for Aerospace Studies, University of Toronto.
Zapesochnyi, I. P. & Felston, P. V. 1966 Opt. Spectrosc. 20, 291.