Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:08:37.898Z Has data issue: false hasContentIssue false

The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow

Published online by Cambridge University Press:  15 November 2016

Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Aditya Bandopadhyay
Affiliation:
Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Suman Chakraborty*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302, India
*
Email address for correspondence: [email protected]

Abstract

The effect of a uniform electric field on the motion of a drop in an unbounded plane Poiseuille flow is studied analytically. The drop and suspending media are considered to be Newtonian and leaky dielectric. We solve for the two-way coupled electric and flow fields analytically by using a double asymptotic expansion for small charge convection and small shape deformation. We obtain two important mechanisms of cross-stream migration of the drop: (i) shape deformation and (ii) charge convection. The second one is a new source of cross-stream migration of the drop in plane Poiseuille flow which is due to an asymmetric charge distribution on the drop surface. Our study reveals that charge convection can cause a spherical non-deformable drop to migrate in the cross-stream direction. The combined effect of charge convection and shape deformation significantly alters the drop velocity, drop trajectory and steady state transverse position of the drop. We predict that, depending on the orientation of the applied uniform electric field and the relevant drop/medium electrohydrodynamic parameters, the drop may migrate either towards the centreline of the flow or away from it. We obtain that the final steady state transverse position of the drop is independent of its initial transverse position in the flow field. Most interestingly, we show that the drop can settle in an off-centreline steady state transverse position. Two-dimensional numerical simulations are also performed to study the drop motion in the combined presence of plane Poiseuille flow and a tilted electric field. The drop trajectory and steady state transverse position of the drop obtained from numerical simulations are in qualitative agreement with the analytical results.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. & Weitz, D. A. 2006 Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88 (2), 024104.Google Scholar
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.Google Scholar
Baroud, C., Delville, J.-P., Gallaire, F. & Wunenburger, R. 2007 Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75 (4), 046302.Google ScholarPubMed
Basu, A. S. & Gianchandani, Y. B. 2008 Virtual microfluidic traps, filters, channels and pumps using Marangoni flows. J. Micromech. Microengng 18 (11), 115031.Google Scholar
Bhagat, A. A. S., Bow, H., Hou, H. W., Tan, S. J., Han, J. & Lim, C. T. 2010 Microfluidics for cell separation. Med. Biol. Engng Comput. 48 (10), 9991014.Google Scholar
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19 (8), 519539.Google Scholar
Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. 2004 Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. A 362 (1818), 10871104.Google Scholar
Casadevall i Solvas, X. & deMello, A. 2011 Droplet microfluidics: recent developments and future applications. Chem. Commun. 47 (7), 19361942.Google Scholar
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions. Rheol. Acta 4 (1), 6472.CrossRefGoogle Scholar
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (01), 131170.CrossRefGoogle Scholar
Chaudhury, K., Mandal, S. & Chakraborty, S. 2016 Droplet migration characteristics in confined oscillatory microflows. Phys. Rev. E 93 (2), 023106.Google Scholar
Chen, X., Song, Y., Li, D. & Hu, G. 2015 Deformation and interaction of droplet pairs in a microchannel under ac electric fields. Phys. Rev. Appl. 4 (2), 024005.Google Scholar
Chen, X., Xue, C., Zhang, L., Hu, G., Jiang, X. & Sun, J. 2014 Inertial migration of deformable droplets in a microchannel. Phys. Fluids 26 (11), 112003.Google Scholar
Cimpeanu, R., Papageorgiou, D. T. & Petropoulos, P. G. 2014 On the control and suppression of the Rayleigh–Taylor instability using electric fields. Phys. Fluids 26 (2).Google Scholar
Das, D. & Saintillan, D.2016 A nonlinear small-deformation theory for transient droplet electrohydrodynamics. arXiv:1605.04036v2 [physics.flu-dyn].Google Scholar
Datta, S., Das, A. K. & Das, P. K. 2015 Uphill movement of sessile droplets by electrostatic actuation. Langmuir 31 (37), 1019010197.CrossRefGoogle ScholarPubMed
Deshmukh, S. D. & Thaokar, R. M. 2013 Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731, 713733.Google Scholar
Ding, X., Li, P., Lin, S.-C. S., Stratton, Z. S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F. & Huang, T. J. 2013 Surface acoustic wave microfluidics. Lab on a Chip 13 (18), 36263649.Google Scholar
Esmaeeli, A. 2016 Dielectrophoretic- and electrohydrodynamic-driven translational motion of a liquid column in transverse electric fields. Phys. Fluids 28, 073306.CrossRefGoogle Scholar
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.Google Scholar
Feng, J. Q. & Scott, T. C. 2006 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289.Google Scholar
Fernández, A. 2008 Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: drops less conductive than the suspending fluid. Phys. Fluids 20 (4), 043304.Google Scholar
Fernández, A. 2009 Shear flow of an emulsion of drops less conductive than the suspending fluid immersed in an electric field by numerical simulation. Colloids Surf. A 338 (1–3), 6879.Google Scholar
Ferrera, C., López-Herrera, J. M., Herrada, M. A., Montanero, J. M. & Acero, A. J. 2013 Dynamical behavior of electrified pendant drops. Phys. Fluids 25 (1), 012104.Google Scholar
Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. 2009 Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip 9 (18), 26252627.Google Scholar
Griggs, A. J., Zinchenko, A. Z. & Davis, R. H. 2007 Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow 33 (2), 182206.Google Scholar
Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. 2012 Droplet microfluidics for high-throughput biological assays. Lab on a Chip 12 (12), 21462155.CrossRefGoogle ScholarPubMed
Ha, J.-W. & Yang, S.-M. 2000a Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J. Fluid Mech. 405, 131156.CrossRefGoogle Scholar
Ha, J.-W. & Yang, S.-M. 2000b Rheological responses of oil-in-oil emulsions in an electric field. J. Rheol. 44 (2), 235.Google Scholar
Haber, S. & Hetsroni, G. 1971 The dynamics of a deformable drop suspended in an unbounded Stokes flow. J. Fluid Mech. 49 (02), 257277.CrossRefGoogle Scholar
Halim, M. A. & Esmaeeli, A. 2013 Computational studies on the transient electrohydrodynamics of a liquid drop. Fluid Dyn. Mater. Process. 9 (4), 435460.Google Scholar
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.Google Scholar
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.Google Scholar
Im, D. J. & Kang, I. S. 2003 Electrohydrodynamics of a drop under nonaxisymmetric electric fields. J. Colloid Interface Sci. 266 (1), 127140.Google Scholar
Karnis, A. & Mason, S. 1967 Particle motions in sheared suspensions. J. Colloid Interface Sci. 24 (2), 164169.CrossRefGoogle Scholar
Khalili, H. & Mortazavi, S. 2012 Numerical simulation of buoyant drops suspended in Poiseuille flow at nonzero Reynolds numbers. Acta Mechanica 224 (2), 269286.Google Scholar
Kim, S. & Karrila, S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.Google Scholar
Lamb, H. 1975 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2013 The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25 (11), 112101.CrossRefGoogle Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.CrossRefGoogle Scholar
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. A. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. Engl. 45 (16), 25562560.Google Scholar
López-Herrera, J. M., Gañán-Calvo, A. M., Popinet, S. & Herrada, M. A. 2015 Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Intl J. Multiphase Flow 71, 1422.CrossRefGoogle Scholar
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230 (5), 19391955.Google Scholar
Magnaudet, J. 2003 Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J. Fluid Mech. 485, 115142.CrossRefGoogle Scholar
Mahlmann, S. & Papageorgiou, D. 2009 Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number. J. Fluid Mech. 626, 367.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92 (2), 023002.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016a Dielectrophoresis of a surfactant-laden viscous drop. Phys. Fluids 28 (6), 062006.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016b Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93 (4), 043127.Google Scholar
Mandal, S., Chaudhury, K. & Chakraborty, S. 2014 Transient dynamics of confined liquid drops in a uniform electric field. Phys. Rev. E 89 (5), 053020.Google Scholar
Mandal, S., Ghosh, U. & Chakraborty, S. 2016 Effect of surfactant on motion and deformation of compound droplets in arbitrary unbounded Stokes flows. J. Fluid Mech. 803, 200249.Google Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.Google Scholar
Mhatre, S. & Thaokar, R. M. 2013 Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit. Phys. Fluids 25 (7), 072105.Google Scholar
Mortazavi, S. & Tryggvason, G. 2000 A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech. 411, 325350.Google Scholar
Mukherjee, S. & Sarkar, K. 2013 Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear. J. Fluid Mech. 727, 318345.Google Scholar
Mukherjee, S. & Sarkar, K. 2014 Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Phys. Fluids 26 (10), 103102.Google Scholar
Pak, O. S., Feng, J. & Stone, H. A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.Google Scholar
Pamme, N. 2012 On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 16 (3–4), 436443.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.Google Scholar
Schwalbe, J. T., Phelan, F. R. Jr., Vlahovska, P. M. & Hudson, S. D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 7797.Google Scholar
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.Google Scholar
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 036302.Google Scholar
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318 (2), 463476.CrossRefGoogle Scholar
Taylor, G. 1966 Studies in electrohydrodynamics. I: the circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.Google Scholar
Thaokar, R. M. 2012 Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field. Eur. Phys. J. E 35 (8), 76.Google Scholar
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drops. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.Google Scholar
Uijttewaal, W. S. J. & Nijhof, E. J. 1995 The motion of a droplet subjected to linear shear flow including the presence of a plane wall. J. Fluid Mech. 302, 45.Google Scholar
Uijttewaal, W. S. J., Nijhof, E.-J. & Heethaar, R. M. 1993 Droplet migration, deformation, and orientation in the presence of a plane wall: a numerical study compared with analytical theories. Phys. Fluids A 5 (4), 819.Google Scholar
Vizika, O. & Saville, D. A. 2006 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239 (–1), 1.CrossRefGoogle Scholar
Vlahovska, P. M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670, 481503.Google Scholar
Wang, Y. & Dimitrakopoulos, P. 2011 Low-Reynolds-number droplet motion in a square microfluidic channel. Theor. Comput. Fluid Dyn. 26 (1–4), 361379.Google Scholar
Wohl, P. R. & Rubinow, S. I. 1974 The transverse force on a drop in an unbounded parabolic flow. J. Fluid Mech. 62 (01), 185207.Google Scholar
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395.Google Scholar
Yariv, E. & Almog, Y. 2016 The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. J. Fluid Mech. 797, 536548.Google Scholar
Zheng, B., Tice, J. D. & Ismagilov, R. F. 2004 Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76 (17), 49774982.Google Scholar
Zhu, Y. & Fang, Q. 2013 Analytical detection techniques for droplet microfluidics – a review. Anal. Chim. Acta 787, 2435.CrossRefGoogle ScholarPubMed
Zhu, Y., Zhu, L.-N., Guo, R., Cui, H.-J., Ye, S. & Fang, Q. 2014 Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci. Rep. 4, 5046.Google Scholar
Supplementary material: File

Mandal supplementary material

Mandal supplementary material 1

Download Mandal supplementary material(File)
File 116.7 KB