Published online by Cambridge University Press: 25 January 1998
Two branches of gravity–capillary solitary water waves are known to bifurcate from a train of infinitesimal periodic waves at the minimum value of the phase speed. In general, these solitary waves feature oscillatory tails with exponentially decaying amplitude and, in the small-amplitude limit, they may be interpreted as envelope-soliton solutions of the nonlinear Schrödinger (NLS) equation such that the envelope travels at the same speed as the carrier oscillations. On water of infinite depth, however, based on the fourth-order envelope equation derived by Hogan (1985), it is shown that the profile of these gravity–capillary solitary waves actually decays algebraically (like 1/x2) at infinity owing to the induced mean flow that is not accounted for in the NLS equation. The algebraic decay of the solitary-wave tails in deep water is confirmed by numerical computations based on the full water-wave equations. Moreover, the same behaviour is found at the tails of solitary-wave solutions of the model equation proposed by Benjamin (1992) for interfacial waves in a two-fluid system.