Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:22:16.992Z Has data issue: false hasContentIssue false

The effect of large-eddy breakup devices on oncoming vorticity

Published online by Cambridge University Press:  20 April 2006

A. P. Dowling
Affiliation:
University Engineering Department, Trumpington Street, Cambridge CB2 1 PZ

Abstract

Experiments have shown that a large-eddy breakup device consisting of a short splitter plate placed in the turbulent boundary layer over a plane wall can lead to a reduction in drag. We investigate the idealized problem of an incident line vortex convected past such a device. The vorticity shed from the trailing edge of the plate is found to cancel the effect of the incident vortex and to reduce velocity fluctuations significantly in the vicinity of the wall.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeamowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Carrier, G. F., Krook, M. & Pearson, C. E. 1966 Functions of a Complex Variable: Theory and Technique. McGraw-Hill.
Corke, T. C., Guezennec, Y. G. & Nagib, H. M. 1979 Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures. In Proc. Viscous Drag Reduction Symp., Dallas. AIAA Prog. Astro. Aero. 72, 128143.Google Scholar
Corke, T. C., Nagib, H. M. & Guezennec, Y. G. 1982 A new view on origin, role and manipulation of large scales in turbulent boundary layers. NASA CR 165861.
Goldstein, M. E. 1976 Aeroacoustics, p. 229. McGraw-Hill.
Goldstein, M. E. & Atassi, H. 1976 A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74, 741765.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1965 Tables of Integrals, Series and Products. Academic.
Graham, J. M. R. 1970 Lifting surface theory for the problem of an arbitrarily yawed sinusoidal gust incident on a thin aerofoil in incompressible flow. Aero. Q. 21, 182198.Google Scholar
Hefner, J. N., Weinstein, L. M. & Bushnell, D. M. 1979 Large-eddy break-up scheme for turbulent viscous drag reduction. In Proc. Viscous Drag Reduction Symp., Dallas. AIAA Prog. Astro. Aero. 72, 110127.Google Scholar
Hefner, J. N., Anders, J. B. & Bushnell, D. M. 1983 Alteration of outer flow structures for turbulent drag reduction. AIAA-8300293.
Howe, M. S. 1976 Influence of vortex shedding on sound generation. J. Fluid Mech. 76, 711740.Google Scholar
Liss, A. Yu. & Usol'Tsev, A. A. 1973 Influence of vortex-wing interaction on reducing vortex induction. Izv. Aviatsionnaya Tecknika 16, 510.Google Scholar
Von KÁrmÁn, T. & Sears, W. R. 1938 Airfoil theory for non-uniform motion. J. Aero. Sci. 5, 379390.Google Scholar
Mckeogh, P. J. & Graham, J. M. R. 1980 The effect of mean loading on the fluctuating loads induced on aerofoils by a turbulent stream. Aero. Q. 31, 5669.Google Scholar
Mumford, J. C. & Savill, A. M. 1984 Parametric studies of flat plate, turbulence manipulators including direct drag results and laser flow visualisation. In Laminar and Turbulent Boundary Layers. Proc. ASME Energy Sources Technology Conference, New Orleans, 12–16 February 1984 (eds. E. M. Uram & H. E. Weber), pp. 4151.
Sears, W. R. 1940 Some aspects of non-stationary airfoil theory and its practical application. J. Aero. Sci. 8, 104108.Google Scholar
Whitehead, D. S. 1972 Vibration and sound generation in a cascade of flat plates in subsonic flow. Aero. Res. Counc. R & M 3685.