Article contents
Effect of large bulk viscosity on large-Reynolds-number flows
Published online by Cambridge University Press: 17 June 2014
Abstract
We examine the inviscid and boundary-layer approximations in fluids having bulk viscosities which are large compared with their shear viscosities for three-dimensional steady flows over rigid bodies. We examine the first-order corrections to the classical lowest-order inviscid and laminar boundary-layer flows using the method of matched asymptotic expansions. It is shown that the effects of large bulk viscosity are non-negligible when the ratio of bulk to shear viscosity is of the order of the square root of the Reynolds number. The first-order outer flow is seen to be rotational, non-isentropic and viscous but nevertheless slips at the inner boundary. First-order corrections to the boundary-layer flow include a variation of the thermodynamic pressure across the boundary layer and terms interpreted as heat sources in the energy equation. The latter results are a generalization and verification of the predictions of Emanuel (Phys. Fluids A, vol. 4, 1992, pp. 491–495).
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
- 12
- Cited by