Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T21:56:48.982Z Has data issue: false hasContentIssue false

Effect of inertial lift on a spherical particle suspended in flow through a curved duct

Published online by Cambridge University Press:  18 July 2019

Brendan Harding*
Affiliation:
School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
Yvonne M. Stokes
Affiliation:
School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
Andrea L. Bertozzi
Affiliation:
Departments of Mathematics and Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
*
Email address for correspondence: [email protected]

Abstract

We develop a model of the forces on a spherical particle suspended in flow through a curved duct under the assumption that the particle Reynolds number is small. This extends an asymptotic model of inertial lift force previously developed to study inertial migration in straight ducts. Of particular interest is the existence and location of stable equilibria within the cross-sectional plane towards which particles migrate. The Navier–Stokes equations determine the hydrodynamic forces acting on a particle. A leading-order model of the forces within the cross-sectional plane is obtained through the use of a rotating coordinate system and a perturbation expansion in the particle Reynolds number of the disturbance flow. We predict the behaviour of neutrally buoyant particles at low flow rates and examine the variation in focusing position with respect to particle size and bend radius, independent of the flow rate. In this regime, the lateral focusing position of particles approximately collapses with respect to a dimensionless parameter dependent on three length scales: specifically, the particle radius, duct height and duct bend radius. Additionally, a trapezoidal-shaped cross-section is considered in order to demonstrate how changes in the cross-section design influence the dynamics of particles.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M., Magaud, P., Gao, Y. & Geoffroy, S. 2014 Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers. Phys. Fluids 26 (12), 123301.Google Scholar
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. & Wells, G. N. 2015 The FEniCS project version 1.5. Arch. Numer. Softw. 3 (100), 923.Google Scholar
Amini, H., Lee, W. & Di Carlo, D. 2014 Inertial microfluidic physics. Lab on a Chip 14, 27392761.Google Scholar
Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.Google Scholar
Ciftlik, A. T., Ettori, M. & Gijs, M. A. M. 2013 High throughput-per-footprint inertial focusing. Small 9 (16), 27642773.Google Scholar
Dean, W. R. 1927 Note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4 (20), 208223.Google Scholar
Dean, W. R. & Hurst, J. M. 1959 Note on the motion of fluid in a curved pipe. Mathematika 6 (1), 7785.Google Scholar
Di Carlo, D. 2009 Inertial microfluidics. Lab on a Chip 9, 30383046.Google Scholar
Di Carlo, D., Edd, J. F., Humphry, K. J., Stone, H. A. & Toner, M. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.Google Scholar
Geislinger, T. M. & Franke, T. 2014 Hydrodynamic lift of vesicles and red blood cells in flow from Fåhræus and Lindqvist to microfluidic cell sorting. Adv. Colloid Interface Sci. 208, 161176.Google Scholar
Guan, G., Wu, L., Bhagat, A. A., Li, Z., Chen, P. C. Y., Chao, S., Ong, C. J. & Han, J. 2013 Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci. Rep. 3, 1475.Google Scholar
Harding, B. 2018 A study of inertial particle focusing in curved microfluidic ducts with large bend radius and low flow rate. In Proceedings of the 21st Australasian Fluid Mechanics Conference, Adelaide, South Australia, Australia. Australasian Fluid Mechanics Society.Google Scholar
Harding, B. 2019 A Rayleigh–Ritz method for Navier–Stokes flow through curved ducts. ANZIAM J. 61 (1), 122.Google Scholar
Harding, B. & Stokes, Y. 2018 Fluid flow in a spiral microfluidic duct. Phys. Fluids 30 (4), 042007.Google Scholar
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.Google Scholar
Hood, K., Lee, S. & Roper, M. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.Google Scholar
Hood, K. T.2016 Theory of particle focusing in inertial microfluidic devices. PhD thesis, University of California, Los Angeles, CA.Google Scholar
Lashgari, I., Ardekani, M. N., Banerjee, I., Russom, A. & Brandt, L. 2017 Inertial migration of spherical and oblate particles in straight ducts. J. Fluid Mech. 819, 540561.Google Scholar
Liu, C., Xue, C., Sun, J. & Hu, G. 2016 A generalized formula for inertial lift on a sphere in microchannels. Lab on a Chip 16, 884892.Google Scholar
Logg, A., Mardal, K.-A. & Wells, G. N. 2012 Automated Solution of Differential Equations by the Finite Element Method. Springer.Google Scholar
Martel, J. M. & Toner, M. 2012 Inertial focusing dynamics in spiral microchannels. Phys. Fluids 24 (3), 032001.Google Scholar
Martel, J. M. & Toner, M. 2013 Particle focusing in curved microfluidic channels. Sci. Rep. 3, 3340.Google Scholar
Martel, J. M. & Toner, M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16 (1), 371396.Google Scholar
Matas, J.-P., Morris, J. F. & Guazzelli, É. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.Google Scholar
Matas, J.-P., Morris, J. F. & Guazzelli, É. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.Google Scholar
Miura, K., Itano, T. & Sugihara-Seki, M. 2014 Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech. 749, 320330.Google Scholar
Moloudi, R., Oh, S., Yang, C., Warkiani, M. E. & Naing, M. W. 2018 Inertial particle focusing dynamics in a trapezoidal straight microchannel: application to particle filtration. Microfluid. Nanofluid. 22 (33), 114.Google Scholar
Nakagawa, N., Yabu, T., Otomo, R., Kase, A., Makino, M., Itano, T. & Sugihara-Seki, M. 2015 Inertial migration of a spherical particle in laminar square channel flows from low to high Reynolds numbers. J. Fluid Mech. 779, 776793.Google Scholar
Nivedita, N., Ligrani, P. & Papautsky, I. 2017 Dean flow dynamics in low-aspect ratio spiral microchannels. Sci. Rep. 7, 44072.Google Scholar
Ookawara, S., Street, D. & Ogawa, K. 2006 Numerical study on development of particle concentration profiles in a curved microchannel. Chem. Engng Sci. 61 (11), 37143724.Google Scholar
Prohm, C. & Stark, H. 2014 Feedback control of inertial microfluidics using axial control forces. Lab on a Chip 14, 21152123.Google Scholar
Ramachandraiah, H., Ardabili, S., Faridi, A. M., Gantelius, J., Kowalewski, J. M., Mårtensson, G. & Russom, A. 2014 Dean flow-coupled inertial focusing in curved channels. Biomicrofluidics 8 (3), 034117.Google Scholar
Russom, A., Gupta, A. K., Nagrath, S., Di Carlo, D., Edd, J. F. & Toner, M. 2009 Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J. Phys. 11 (7), 075025.Google Scholar
Schonberg, J. A. & Hinch, E. J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.Google Scholar
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189 (4760), 209210.Google Scholar
Sofela, S., Sahloul, S., Rafeie, M., Kwon, T., Han, J., Warkiani, M. E. & Song, Y.-A. 2018 High-throughput sorting of eggs for synchronization of C. Elegans in a microfluidic spiral chip. Lab on a Chip 18, 679687.Google Scholar
Warkiani, M. E., Guan, G., Luan, K. B., Lee, W. C., Bhagat, A. A. S., Kant Chaudhuri, P., Tan, D. S.-W., Lim, W. T., Lee, S. C., Chen, P. C. Y. et al. 2014 Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab on a Chip 14, 128137.Google Scholar
Winters, K. H. 1987 A bifurcation study of laminar flow in a curved tube of rectangular cross-section. J. Fluid Mech. 180, 343369.Google Scholar
Wu, L., Guan, G., Hou, H. W., Bhagat, A. A. S. & Han, J. 2012 Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Analyt. Chem. 84 (21), 93249331.Google Scholar
Yamamoto, K., Wu, X., Hyakutake, T. & Yanase, S. 2004 Taylor–Dean flow through a curved duct of square cross section. Fluid Dyn. Res. 35 (2), 6786.Google Scholar
Yanase, S., Goto, N. & Yamamoto, K. 1989 Dual solutions of the flow through a curved tube. Fluid Dyn. Res. 5 (3), 191201.Google Scholar