Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T22:05:17.665Z Has data issue: false hasContentIssue false

Effect of external noise on the hysteresis characteristics of a thermoacoustic system

Published online by Cambridge University Press:  10 July 2015

E. A. Gopalakrishnan*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
R. I. Sujith
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
*
Email address for correspondence: [email protected]

Abstract

We present the effect of noise on the hysteresis characteristics of a prototypical thermoacoustic system, a horizontal Rijke tube. As we increase the noise intensity, we find that the width of the hysteresis zone decreases. However, we find that the rate of decrease in hysteresis width is constant for all the mass flow rates considered in the present study. We also show that the subcritical transition observed in the absence of noise is no longer discernible once the intensity of noise is above a threshold value and the transition appears to be continuous. We compare our experimental observations with the results obtained from a numerical model perturbed with additive Gaussian white noise and we find a qualitative agreement between the experimental and the numerical results.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I. 1996 Analysis of Observed Chaotic Data. Springer.Google Scholar
Altares, V. & Nicolis, G. 1988 Stochastically forced Hopf bifurcation: approximate Fokker–Planck equation in the limit of short correlation times. Phys. Rev. A 37, 36303633.Google Scholar
Aumaitre, S., Mallick, K. & Petrelis, F. 2007 Noise-induced bifurcations, multiscaling and on–off intermittency. J. Stat. Mech. Theory Exp. 2007 (7), P07016.Google Scholar
Balasubramanian, K. & Sujith, R. I. 2008 Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20, 044103.Google Scholar
Berthet, R., Petrossian, A., Residori, S., Roman, B. & Fauve, S. 2003 Effect of multiplicative noise on parametric instabilities. Physica D 174, 8499.Google Scholar
Brownlee, W. G. 1964 Nonlinear axial combustion instability in solid propellant rocket motors. AIAA J. 2 (2), 275284.Google Scholar
Brownlee, W. G. & Kimbell, G. H. 1966 Shock propagation in solid-propellant rocket combustors. AIAA J. 4 (6), 11321134.CrossRefGoogle Scholar
Burrage, P. M.1999 Runge–Kutta methods for stochastic differential equations. PhD thesis, The University of Queensland.Google Scholar
Cantrell, R. H., McClure, F. T. & Hart, R. W. 1965 Effects of thermal radiation on the acoustic response function of solid propellants. AIAA J. 3 (3), 418426.Google Scholar
Coullet, P. H., Elphick, C. & Tirapegui, E. 1985 Normal form of a Hopf bifurcation with noise. Phys. Lett. A 111 (6), 277282.Google Scholar
Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kefi, S., Livina, V., Seekell, D. A., van Nes, E. H. & Scheffer, M. 2012 Methods for detecting early warning signals of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7 (7), e41010.Google Scholar
Deco, G. & Marti, D. 2007 Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems. Biol. Cybern. 96, 487496.CrossRefGoogle ScholarPubMed
Dickinson, L. A. 1962 Command initiation of finite wave axial combustion instability in solid propellant rocket engines. J. Am. Rocket Soc. 32, 643644.Google Scholar
Fedotov, S., Bashkirtseva, I. & Ryashko, L. 2002 Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent subcritical transition. Phys. Rev. E 66, 066310.Google Scholar
Geier, L. S., Tolstopjatenko, A. V. & Ebeling, W. 1985 Noise induced transitions due to external additive noise. Phys. Lett. A 108 (7), 329332.Google Scholar
Gopalakrishnan, E. A. & Sujith, R. I. 2014 Influence of system parameters on the hysteresis characteristics of a horizontal Rijke tube. Intl J. Spray Combust. Dyn. 6 (3), 293316.Google Scholar
Heckl, M. A. 1988 Active control of the noise from a Rijke tube. J. Sound Vib. 124, 117133.Google Scholar
Hilborn, R. C. 2000 Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Horsethemke, W. & Lefever, R. 2006 Noise Induced Transitions. Springer.Google Scholar
Jegadeesan, V.2012 Experimental investigation of the noise induced transition in the thermoacoustic systems. MS thesis, Indian Institute of Technology Madras.Google Scholar
Jegadeesan, V. & Sujith, R. I. 2013 Experimental investigation of noise induced triggering in thermoacoustic systems. Proc. Combust. Inst. 34, 31753183.Google Scholar
Juel, A., Darbyshire, A. G. & Mullin, T. 1997 Effect noise on pitchfork and Hopf bifurcations. Proc. R. Soc. Lond. 453, 26272647.CrossRefGoogle Scholar
Juniper, M. P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.Google Scholar
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22, 023129.CrossRefGoogle ScholarPubMed
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.Google Scholar
Kurtz, T. G. 2007 Lectures on Stochastic Analysis. University of Wisconsin-Madison.Google Scholar
Laio, F. & Ridolfi, L. 2008 Noise-induced transitions in state-dependent dichotomous processes. Phys. Rev. E 78, 031137.Google Scholar
Lee, K. E., Lopes, M. A., Mendes, J. F. F. & Goltsev, A. V. 2014 Critical phenomena and noise-induced phase transitions in neuronal networks. Phys. Rev. E 89, 012701.Google Scholar
Lekkas, K., Schimansky-Geier, L. & EngeI-Herbert, H. 1988 Stochastic oscillations induced by colored noise. Physica B 70, 517520.Google Scholar
Levine, J. N. & Baum, J. D.1982 Modeling of nonlinear combustion instability in solid propellant rocket motors. Nineteenth International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA.Google Scholar
L’Heureux, I. & Kapral, R. 1989 White noise induced transitions between a limit cycle and a fixed point. Phys. Lett. A 136 (9), 472476.Google Scholar
Lieuwen, T. & Banaszuk, A. 2005 Background noise effects on combustor stability. J. Propul. Power 21, 2531.CrossRefGoogle Scholar
Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. A 224, 123.Google Scholar
Lores, E. M. & Zinn, B. T. 1973 Nonlinear longitudinal instability in rocket motors. Combust. Sci. Technol. 7 (6), 245256.Google Scholar
Mariappan, S.2011 Theoretical and experimental investigation of the non-normal nature of thermoacoustic interactions. PhD thesis, Indian Institute of Technology Madras.CrossRefGoogle Scholar
Marxman, G. A. & Wooldridge, C. E. 1969 Finite-amplitude axial instability in solid-rocket combustion. Symp. Intl Combust. 12 (1), 115127.Google Scholar
Matveev, K. I.2003 Thermo-acoustic instabilities in the Rijke tube: Experiments and modeling. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
McManus, K. R., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19, 129.Google Scholar
Ojalvo, A. G. & Sancho, J. M. 1999 Noise in Spatially Extended Systems. Springer.CrossRefGoogle Scholar
Picchini, U.2007 SDE tool box manual, http://sdetoolbox.sourceforge.net.Google Scholar
Rayleigh, J. W. S. 1878 The explanation of certain acoustical phenomena. Nature 18, 319321.CrossRefGoogle Scholar
Richardson, M. 2009 Stochastic Differential Equations Case Study. University of Oxford.Google Scholar
Ros, O. G. C., Platero, G. & Bonilla, L. L. 2013 Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators. Phys. Rev. B 87, 235424.Google Scholar
Sastry, S. & Hijab, O. 1981 Bifurcation in the presence of small noise. Syst. Control Lett. 1 (3), 159161.Google Scholar
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M. & Sugihara, G. 2009 Early-warning signals for critical transitions. Nature 461, 5359.Google Scholar
Strogatz, S. H. 2000 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.Google Scholar
Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P. 2010 Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust. Dyn. 2 (4), 325355.Google Scholar
Subramanian, P., Sujith, R. I. & Wahi, P. 2013 Subcritical bifurcation and bistability in thermoacoustic systems. J. Fluid Mech. 715, 210238.Google Scholar
Surovyatkina, E. 2005 Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems. Nonlinear Process. Geophys. 12, 2529.Google Scholar
Waugh, I. C., Geuß, M. & Juniper, M. P. 2011 Triggering, bypass transition and the effect of noise on a linearly stable thermoacoustic system. Proc. Combust. Inst. 33, 29452952.Google Scholar
Waugh, I. C. & Juniper, M. P. 2011 Triggering in a thermoacoustic system with stochastic noise. Intl J. Spray Combust. Dyn. 3 (3 & 4), 225242.Google Scholar
Wicker, J. M., Greene, W. D., Kim, S. I. & Yang, V. 1996 Triggering of longitudinal combustion instabilities in rocket motors: nonlinear combustion response. J. Propul. Power 12, 11481158.CrossRefGoogle Scholar
Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A. & Kurths, J. 2010 Stochastic bifurcations and coherence like resonance in self-sustained bistable oscillator. Phys. Rev. E 81, 011106.Google Scholar
Zinn, B. T. & Lieuwen, T. 2005 Combustion instabilities: basic concepts. In Combustion Instabilities in Gasturbine Engines: Operational Experience, Fundamental Mechanisms, Modeling (ed. Lieuwen, T. C. & Yang, V.), AIAA.Google Scholar