Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T06:08:20.096Z Has data issue: false hasContentIssue false

Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics

Published online by Cambridge University Press:  10 June 2016

T. C. Lee
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand
D. S. Long
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
R. J. Clarke*
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand
*
Email address for correspondence: [email protected]

Abstract

The endothelial glycocalyx layer (EGL) is a macromolecular layer that lines the inner surface of blood vessels. It is believed to serve a number of physiological functions in the microvasculature, including protection of the vessel walls from potentially harmful levels of fluid shear, as a molecular sieve that acts to regulate transendothelial mass transport, and as a transducer of mechanical stress from the vessel lumen. To best fulfil some of its roles, it has been suggested that the EGL redistributes, so that it is thickest at the cell–cell junctions. It has also been suggested that the majority of mechanotransduction occurs through the solid phase of the EGL, rather than via its fluid phase. The difficulties associated with measuring the distribution of the EGL in vivo make these hypotheses difficult to confirm experimentally. Consequently, to gauge the impact of EGL redistribution from a theoretical standpoint, we compute the flow through a porous-lined microvessel, the endothelial surface of which has been informed by confocal microscopy images of a postcapillary venule. Following earlier studies, we model the poroelastohydrodynamics of the EGL using biphasic mixture theory, taking advantage of a recently developed boundary integral representation of these equations to solve the coupled poroelastohydrodynamics using the boundary element method. However, the low permeabilities of the EGL mean that viscous effects are confined to thin layers, thereby also enabling an asymptotic treatment of the dynamics in this limit. In this asymptotic regime, we also consider a two-layer Stokes flow model for the lumen flow to approximate the effect of red blood cells within the lumen. We demonstrate that redistribution of the EGL can have a substantial impact upon microvessel haemodynamics. We also confirm that the bulk of the mechanical stress is indeed carried through the solid phase of the EGL.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, R. H., Lenz, J. F., Zhang, X., Adamson, G. N., Weinbaum, S. & Curry, F. E. 2004 Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557 (3), 889907.Google Scholar
Baddeley, A.2010 Analysing spatial point patterns in R. Tech. Rep., CSIRO, Version 4.1. Available at www.csiro.au/resources/pf16h.html.Google Scholar
Baddeley, A. & Turner, R. 2005 spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12 (6), 142.Google Scholar
Baddeley, A., Turner, R., Mateu, J. & Bevan, A. 2013 Hybrids of Gibbs point process models and their implementation. J. Stat. Softw. 55 (11), 143.Google Scholar
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G. et al. 2014a PETSc users manual. In Tech. Rep., Argonne National Laboratory,; ANL-95/11 – Revision 3.5.Google Scholar
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G. et al. 2014b PETSc Web page. http://www.mcs.anl.gov/petsc.Google Scholar
Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. 1997 Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (ed. Arge, E., Bruaset, A. M. & Langtangen, H. P.), pp. 163202. Birkhäuser.Google Scholar
Barbee, K. A., Davies, P. F. & Lal, R. 1994 Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circulat. Res. 74 (1), 163171.CrossRefGoogle ScholarPubMed
Barry, S. I., Parkerf, K. H. & Aldis, G. K. 1991 Fluid flow over a thin deformable porous layer. Z. Angew. Math. Phys. 42, 633648.Google Scholar
van den Berg, B. M., Spaan, J. A. E., Rolf, T. M. & Vink, H. 2006 Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290 (2), H915H920.Google Scholar
Brown, R.2007 Fitellipse: least squares ellipse fitting. Available at http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m, last checked: 18.02.2011.Google Scholar
Clough, G. & Michel, C. C. 1998 Quantitative comparisons of hydraulic permeability and endothelial intercellular cleft dimensions in single frog capillaries. J. Physiol. 405, 563576.Google Scholar
Colom, B., Bodkin, J. V., Beyrau, M., Woodfin, A., Ody, C., Rourke, C., Chavakis, T., Brohi, K., Imhof, B. A. & Nourshargh, S. 2015 Leukotriene b4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo . Immunity 42 (6), 10751086.Google Scholar
Curry, F. E. & Adamson, R. H. 2012 Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Engng. 40 (4), 828839.CrossRefGoogle ScholarPubMed
Dabagh, M., Jalali, P., Butler, P. J. & Tarbell, J. M. 2014 Shear-induced force transmission in a multicomponent, multicell model of the endothelium. J. R. Soc. Interface 11 (98), 20140431.Google Scholar
Damiano, E. R. 1998 The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc. Res. 55 (1), 7791.Google Scholar
Damiano, E. R., Duling, B. R., Ley, K. & Skalak, T. C. 1996 Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer. J. Fluid Mech. 314, 163189.Google Scholar
Damiano, E. R., Long, D. S., El-Khatib, F. H. & Stace, T. M. 2004 On the motion of a sphere in a Stokes flow parallel to a Brinkman half-space. J. Fluid Mech. 500, 75101.Google Scholar
Damiano, E. R. & Stace, T. M. 2005 Flow and deformation of the capillary glycocalyx in the wake of a leukocyte. Phys. Fluids 17 (3), 031509.Google Scholar
Drew, D. A. 1983 Mathematical modelling of two-phase flow. Annu. Rev. Fluid Mech. 15 (2), 261291.Google Scholar
Ebong, E. E., Macaluso, F. P., Spray, D. C. & Tarbell, J. M. 2011 Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31 (8), 19081915.CrossRefGoogle ScholarPubMed
Ehlers, W. & Bluhm, J. 2002 Porous Media: Theory, Experiments and Numerical Applications. Springer.Google Scholar
Engwirda, D.2009 MESH2d - Automatic Mesh Generation. Available at http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation, last checked: 01.03.2014.Google Scholar
Feng, J., Ganatos, P. & Weinbaum, S. 1998 Motion of a sphere near planar confining boundaries in a Brinkman medium. J. Fluid Mech. 375, 265296.Google Scholar
Feng, J. & Weinbaum, S. 2000 Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422, 281317.Google Scholar
Florian, J. A., Kosky, J. R., Ainslie, K., Pang, Z., Dull, R. O. & Tarbell, J. M. 2003 Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circulat. Res. 93, e136e142.Google Scholar
Gambaruto, A. M. 2015 Computational haemodynamics of small vessels using the moving particle semi-implicit (MPS) method. J. Comput. Phys. 302, 6896.CrossRefGoogle Scholar
Gouverneur, M., Berg, B., Nieuwdorp, M., Stroes, E. & Vink, H. 2006 Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Internal Med. 259 (4), 393400.Google Scholar
Guiggiani, M. & Gigante, A. 1990 A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. Trans. ASME J. Appl. Mech. 57 (4), 906915.Google Scholar
Han, Y., Weinbaum, S., Spaan, J. A. E. & Vimk, H. 2006 Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554, 217235.Google Scholar
Hariprasad, D. S. & Secomb, T. W. 2012 Motion of red blood cells near microvessel walls: effects of a porous layer. J. Fluid Mech. 705, 195212.Google Scholar
Holcombe, S.2011 Growbubbles – maximum radius packing. Available at http://www.mathworks.com/matlabcentral/fileexchange/33213-growbubbles-maximum-radius-packing, last checked: 12.05.2015.Google Scholar
Hu, X., Adamson, R. H., Liu, B., Curry, F. E. & Weinbaum, S. 2000 Starling forces that oppose filtration after tissue oncotic pressure is increased. Am. J. Physiol. Heart Circ. Physiol. 279 (4), H1724H1736.Google Scholar
Hu, X. & Weinbaum, S. 1999 A new view of Starling’s hypothesis at the microstructural level. Microvasc. Res. 58 (3), 281304.Google Scholar
Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. 2008 Statistical Analysis and Modelling of Spatial Point Patterns. Wiley.Google Scholar
Johnson, S. G.2013 Cubature (multi-dimensional integration). Available at http://ab-initio.mit.edu/wiki/index.php/Cubature, last checked: 05.10.2014.Google Scholar
Kim, S., Kong, R. L., Popel, A. S., Intaglietta, M. & Johnson, P. C. 2007 Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. Heart Circ. Physiol. 293 (3), H1526H1535.Google Scholar
Kolev, N. 2002 Multiphase Flow Dynamics, vol. 1: Fundamentals. Springer.Google Scholar
Levick, J. R. & Michel, C. C. 2010 Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87 (2), 198210.Google Scholar
Ley, K. 2008 The microcirculation in inflammation. In Microcirculation, 2nd edn. (ed. Tuma, R. F., Durn, W. N. & L., K.), chap. 9, pp. 387448. Academic.Google Scholar
Long, D. S., Smith, M. L., Pries, A. R., Ley, K. & Damiano, E. R. 2004 Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl Acad. Sci. USA 101 (27), 1006010065.Google Scholar
Michel, C. C. 1997 Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Expl. Physiol. 82 (1), 130.Google Scholar
Nerem, R. M., Levesque, M. J. & Cornhill, J. F. 1981 Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Engng 103 (3), 172176.Google Scholar
Nieuwdorp, M., van Haeften, T. W., Gouverneur, M. C. L. G., Mooij, H. L., van Lieshout, M. H. P., Levi, M., Meijers, J. C. M., Holleman, F., Hoekstra, J. B. L., Vink, H. et al. 2006 Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55 (2), 480486.Google Scholar
Perrin, R. M., Harper, S. J. & Bates, D. O. 2007 A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem. Biophys. 49 (2), 6572.Google Scholar
Peskin, C. S.1972 Flow patterns around heart valves: a digital computer method for solving the equations of motion. PhD thesis, Albert Einstein College of Medicine.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. Chapman & Hall/CRC.Google Scholar
Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F. & Gaehtgens, P. 1994 Resistance to blood flow in microvessels in vivo. Circulat. Res. 75, 904915.Google Scholar
Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274 (3), H1016H1022.Google Scholar
Secomb, T. W., Hsu, R. & Pries, A. R. 2001 Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281 (2), H629H636.Google Scholar
Sharan, M. & Popel, A. S. 2001 A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415428.Google Scholar
Smith, M. L., Long, D. S., Damiano, E. R. & Ley, K. 2003 Near-wall-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85 (1), 637645.Google Scholar
Squire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. 2001 Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering?. J. Struct. Biol. 136 (3), 239255.Google Scholar
Sumets, P. P., Cater, J. E., Long, D. S. & Clarke, R. J. 2015 A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx. Proc. R. Soc. Lond. A 471 (2179), 20140955.Google Scholar
Tarbell, J. M. & Shi, Z.-D. 2013 Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech. Model. Mechanobiol. 12 (1), 111121.Google Scholar
Tarbell, J. M., Simon, S. I. & Curry, F.-R. E. 2014 Mechanosensing at the vascular interface. Annu. Rev. Biomed. Engng 16 (1), 505532; pMID: 24905872.Google Scholar
Thi, M. M., Tarbell, J. M., Weinbaum, S. & Spray, D. C. 2004 The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a bumper-car model. Proc. Natl Acad. Sci. USA 101 (47), 1648316488.Google Scholar
Vincent, P. E., Sherwin, S. J. & Weinberg, P. D. 2008 Viscous flow over outflow slits covered by an anisotropic Brinkman medium: a model of flow above interendothelial cell clefts. Phys. Fluids 20 (6), 063106.CrossRefGoogle Scholar
Vincent, P. E., Sherwin, S. J. & Weinberg, P. D. 2009 The effect of a spatially heterogeneous transmural water flux on concentration polarization of low density lipoprotein in arteries. Biophys. J. 96 (8), 31023115.CrossRefGoogle ScholarPubMed
Vincent, P. E., Sherwin, S. J. & Weinberg, P. D. 2010 The effect of the endothelial glycocalyx layer on concentration polarisation of low density lipoprotein in arteries. J. Theor. Biol. 265 (1), 117.CrossRefGoogle ScholarPubMed
Vink, H., Constantinescu, A. A. & Spaan, J. A. E. 2000 Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet–endothelial cell adhesion. Circulation 101 (13), 15001502.CrossRefGoogle ScholarPubMed
Vink, H. & Duling, B. R. 1996 Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circulat. Res. 79 (3), 581589.Google Scholar
Wang, W. & Parker, K. H. 1995 The effect of deformable porous surface layers on the motion of a sphere in a narrow cylindrical tube. J. Fluid Mech. 283, 287305.Google Scholar
Wei, H. H., Waters, S. L., Liu, S. Q. & Grotberg, J. B. 2003 Flow in a wavy-walled channel lined with a poroelastic layer. J. Fluid Mech. 492, 2345.Google Scholar
Weinbaum, S. 1998 1997 Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann. Biomed. Engng 26, 627643.Google Scholar
Weinbaum, S., Tarbell, J. M. & Damiano, E. R. 2007 The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Engng 9 (1), 121167; pMID: 17373886.Google Scholar
Weinbaum, S., Zhang, X., Yuefeng Han, H. V. & Cowin, S. 2003 Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. 100 (13), 79887995.Google Scholar
Woodfin, A., Voisin, M.-B., Beyrau, M., Colom, B., Caille, D., Diapouli, F.-M., Nash, G. B., Chavakis, T., Albelda, S. M., Rainger, G. E. et al. 2011 The junctional adhesion molecule jam-c regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12 (8), 761769.CrossRefGoogle ScholarPubMed
Yao, Y., Rabodzey, A. & Dewey, C. F. 2007 Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293 (2), H1023H1030.Google Scholar
Yen, W.-Y., Cai, B., Zeng, M., Tarbell, J. M. & Fu, B. M. 2012 Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc. Res. 83 (3), 337346.CrossRefGoogle ScholarPubMed
Zhao, Y., Chien, S. & Weinbaum, S. 2001 Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80 (3), 11241140.Google Scholar
Supplementary material: File

Lee supplementary material

Lee supplementary material 1

Download Lee supplementary material(File)
File 22.3 MB