Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T09:18:53.128Z Has data issue: false hasContentIssue false

The effect of double diffusion on entrainment in turbulent plumes

Published online by Cambridge University Press:  03 December 2019

Maksim Dadonau*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CambridgeCB3 0WA, UK
J. L. Partridge
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CambridgeCB3 0WA, UK
P. F. Linden
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CambridgeCB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

We investigate experimentally the effect of double diffusion in the salt-fingering configuration on entrainment in turbulent plumes. Plumes over a range of source buoyancy fluxes $B_{0}$ and source density ratios $R_{\unicode[STIX]{x1D70C}}$ are examined. When the plumes are double diffusive ($R_{\unicode[STIX]{x1D70C}}>0$) the entrainment coefficient $\unicode[STIX]{x1D6FC}$ is not constant, with an up to 20 % reduction from the value found for single-diffusive plumes, that is, plumes with $R_{\unicode[STIX]{x1D70C}}=0$. The scale of reduction is found to be in direct relation to the source density ratio and is inversely related to the distance travelled by the plume, indicating that double-diffusive effects decrease as the plume evolves. We propose an explanation for the observed reduction in the entrainment coefficient on the basis of differential diffusion hindering large-scale engulfment at the edge of the plume.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, W. D. 1983 A technique for the direct measurement of volume flux of a plume. J. Fluid Mech. 132, 247256.CrossRefGoogle Scholar
Briggs, G. A. 1982 Plume rise predictions. In Lectures on Air Pollution and Environmental Impact Analyses, pp. 59111. Springer.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.CrossRefGoogle Scholar
Burridge, H. C., Parker, D. A., Kruger, E. S., Partridge, J. L. & Linden, P. F. 2017 Conditional sampling of a high Péclet number turbulent plume and the implications for entrainment. J. Fluid Mech. 823, 2656.CrossRefGoogle Scholar
Burridge, H. C., Partridge, J. L. & Linden, P. F. 2016 The fluxes and behaviour of plumes inferred from measurements of coherent structures within images of the bulk flow. Atmos.-Ocean 54 (4), 403417.CrossRefGoogle Scholar
Carazzo, G., Kaminski, E. & Tait, S. 2006 The route to self-similarity in turbulent jets and plumes. J. Fluid Mech. 547, 137148.CrossRefGoogle Scholar
Gartshore, I. S. 1966 An experimental examination of the large-eddy equilibrium hypothesis. J. Fluid Mech. 24 (1), 8998.CrossRefGoogle Scholar
George, W. K., Alpert, R. L. & Tamanini, F. 1977 Turbulence measurements in an axisymmetric buoyant plume. Intl J. Heat Mass Transfer 20 (11), 11451154.CrossRefGoogle Scholar
Ghenai, C., Mudunuri, A., Lin, C. X. & Ebadian, M. A. 2003 Double-diffusive convection during solidification of a metal analog system (NH4Cl–H2O) in a differentially heated cavity. Exp. Therm. Fluid Sci. 28 (1), 2335.CrossRefGoogle Scholar
Hunt, G. R. & Van den Bremer, T. S. 2010 Classical plume theory: 1937–2010 and beyond. IMA J. Appl. Maths 76 (3), 424448.CrossRefGoogle Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 377396.CrossRefGoogle Scholar
Hunt, G. R. & Linden, P. F. 2001 Steady-state flows in an enclosure ventilated by buoyancy forces assisted by wind. J. Fluid Mech. 426, 355386.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1984 Double-diffusive convection due to crystallization in magmas. Annu. Rev. Earth Planet. Sci. 12 (1), 1137.CrossRefGoogle Scholar
Konopliv, N. & Meiburg, E. 2016 Double-diffusive lock-exchange gravity currents. J. Fluid Mech. 797, 729764.CrossRefGoogle Scholar
Law, A. W., Ho, W. F. & Monismith, S. G. 2004 Double diffusive effect on desalination discharges. J. Hydraul. Engng 130 (5), 450457.CrossRefGoogle Scholar
Linden, P. F. 2000 Convection in the environment. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.). Cambridge University Press.Google Scholar
Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.CrossRefGoogle Scholar
McDougall, T. J. 1983 Double-diffusive plumes in unconfined and confined environments. J. Fluid Mech. 133, 321343.CrossRefGoogle Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5 (1), 151163.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.Google Scholar
Partridge, J. L. & Linden, P. F. 2013 Validity of thermally-driven small-scale ventilated filling box models. Exp. Fluids 54, 1613.CrossRefGoogle Scholar
Roberts, D. A., Johnston, E. L. & Knott, N. A. 2010 Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 44 (18), 51175128.CrossRefGoogle ScholarPubMed
Rouse, H., Yih, C. S. & Humphreys, H. W. 1952 Gravitational convection from a boundary source. Tellus 4 (3), 201210.CrossRefGoogle Scholar
Ruddick, B. R. & Shirtcliffe, T. G. L. 1979 Data for double diffusers: physical properties of aqueous salt–sugar solutions. Deep Sea Res. A 26 (7), 775787.CrossRefGoogle Scholar
Shabbir, A. & George, W. K. 1994 Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 132.CrossRefGoogle Scholar
Townsend, A. A. 1970 Entrainment and the structure of turbulent flow. J. Fluid Mech. 41 (1), 1346.CrossRefGoogle Scholar
Turner, J. S. 1967 Salt fingers across a density interface. In Deep Sea Research and Oceanographic Abstracts, vol. 14, pp. 599611. Elsevier.Google Scholar
Turner, J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Turner, J. S. 2003 Vertical transports produced by double-diffusive plumes in a confined homogeneous environment. J. Fluid Mech. 493, 131149.CrossRefGoogle Scholar
Turner, J. S. & Veronis, G. 2000 Laboratory studies of double-diffusive sources in closed regions. J. Fluid Mech. 405, 269304.CrossRefGoogle Scholar
Wang, H. & Law, A. W. 2002 Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 459, 397428.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.Google ScholarPubMed