Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:51:53.777Z Has data issue: false hasContentIssue false

The effect of diffusion on the dynamics of unsteady detonations

Published online by Cambridge University Press:  17 April 2012

C. M. Romick
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
T. D. Aslam
Affiliation:
Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. M. Powers*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: [email protected]

Abstract

The dynamics of a one-dimensional detonation predicted by a one-step irreversible Arrhenius kinetic model are investigated in the presence of mass, momentum and energy diffusion. A study is performed in which the activation energy is varied and the length scales of diffusion and reaction are held constant. As the activation energy is increased, the system goes through a series of period-doubling events and eventually undergoes a transition to chaos. The rate at which these bifurcation points converge is calculated and shown to be in agreement with the Feigenbaum constant. Within the chaotic regime, there exist regions in which there are limit cycles consisting of a small number of oscillatory modes. When an appropriately fine grid is used to capture mass, momentum and energy diffusion, predictions are independent of the differencing scheme. Diffusion affects the behaviour of the system by delaying the onset of instability and strongly influencing the dynamics in the unstable regime. The use of the reactive Euler equations to predict detonation dynamics in the unstable and marginally stable regimes is called into question as the selected reactive and diffusive length scales are representative of real physical systems; reactive Navier–Stokes is a more appropriate model in such regimes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Al-Khateeb, A. N., Powers, J. M. & Paolucci, S. 2010 On the necessary grid resolution for verified calculation of premixed laminar flames. Commun. Comput. Phys. 8 (2), 304326.CrossRefGoogle Scholar
2. Bourlioux, A., Majda, A. J. & Roytburd, V. 1991 Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Maths 51 (2), 303343.CrossRefGoogle Scholar
3. Clarke, J. F., Kassoy, D. R., Meharzi, N. E., Riley, N. & Vasantha, R. 1990 On the evolution of plane detonations. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 429 (1877), 259283.Google Scholar
4. Clarke, J. F., Kassoy, D. R. & Riley, N. 1986 On the direct initiation of a plane detonation wave. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 408 (1834), 129148.Google Scholar
5. Deiterding, R. 2009 A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87, 769783.CrossRefGoogle Scholar
6. Erpenbeck, J. J. 1964 Stability of idealized one-reaction detonations. Phys. Fluids 7 (5), 684696.CrossRefGoogle Scholar
7. Fedkiw, R. P., Merriman, B. & Osher, S. 1997 High accuracy numerical methods for thermally perfect gas flows with chemistry. J. Comput. Phys. 132 (2), 175190.CrossRefGoogle Scholar
8. Feigenbaum, M. J. 1979 The universal metric properties of nonlinear transformations. J. Stat. Phys. 21 (6), 669706.CrossRefGoogle Scholar
9. Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.Google Scholar
10. Gasser, I. & Szmolyan, P. 1993 A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24 (4), 968986.CrossRefGoogle Scholar
11. He, X. & Karagozian, A. R. 2006 Pulse-detonation-engine simulations with alternative geometries and reaction kinetics. J. Propul. Power 22 (4), 852861.CrossRefGoogle Scholar
12. Henrick, A. K., Aslam, T. D. & Powers, J. M. 2006 Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comput. Phys. 213 (1), 311329.CrossRefGoogle Scholar
13. Hirschfelder, J. O. & Curtiss, C. F. 1958 Theory of detonations. I. Irreversible unimolecular reaction. J. Chem. Phys. 28 (6), 11301147.CrossRefGoogle Scholar
14. Hu, X. Y., Khoo, B. C., Zhang, D. L. & Jiang, Z. L. 2004 The cellular structure of a two-dimensional detonation wave. Combust. Theor. Model. 8 (2), 339359.CrossRefGoogle Scholar
15. Kasimov, A. R. & Stewart, D. S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16 (10), 35663578.CrossRefGoogle Scholar
16. Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of planar detonations. J. Fluid Mech. 216, 103132.CrossRefGoogle Scholar
17. Lyng, G. & Zumbrun, K. 2004 One-dimensional stability of viscous strong detonation waves. Arch. Rat. Mech. Anal. 173, 213277.CrossRefGoogle Scholar
18. May, R. M. 1976 Simple mathematical models with very complicated dynamics. Nature 261, 459467.CrossRefGoogle ScholarPubMed
19. Ng, H. D., Higgins, A. J., Kiyanda, C. B., Radulescu, M. I., Lee, J. H. S., Bates, K. R. & Nikiforakis, N. 2005 Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9 (1), 159170.CrossRefGoogle Scholar
20. Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. & Anderson, J. D. 1998 A numerical study of a two-dimensional detonation using a detailed chemical reaction model. Combust. Flame 113 (1–2), 147163.CrossRefGoogle Scholar
21. Powers, J. M. 2006 Review of multiscale modelling of detonation. J. Propul. Power 22 (6), 12171229.CrossRefGoogle Scholar
22. Powers, J. M. & Paolucci, S. 2005 Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43 (5), 10881099.CrossRefGoogle Scholar
23. Quirk, J. J. 1994 A contribution to the great Riemann solver debate. Intl J. Numer. Meth. Fluids 18, 555574.CrossRefGoogle Scholar
24. Radulescu, M. I., Sharpe, G. J., Law, C. K. & Lee, J. H. S. 2007 The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.CrossRefGoogle Scholar
25. Roache, P. J. 2002 Code verification by the method of manufactured solutions. Trans. ASME: J. Fluids Engng 124 (1), 410.Google Scholar
26. Seitenzahl, I. R., Meakin, C. A., Townsley, D. M., Lamb, D. Q. & Truran, J. W. 2009 Spontaneous initiation of detonations in white dwarf environments: determination of critical sizes. Astrophys. J. 696, 515527.CrossRefGoogle Scholar
27. Sharpe, G. J. 1997 Linear stability of idealized detonations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453 (1967), 26032625.CrossRefGoogle Scholar
28. Sharpe, G. J. & Falle, S. A. E. G. 2000 Numerical simulations of pulsating detonations: I. Nonlinear stability of steady detonations. Combust. Theor. Model. 4, 557574.Google Scholar
29. Shepherd, J. E. 2009 Detonation in gases. Proc. Combust. Inst. 32, 8398.CrossRefGoogle Scholar
30. Singh, S., Rastigejev, Y., Paolucci, S. & Powers, J. M. 2001 Viscous detonation in using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation. Combust. Theor. Model. 5 (2), 163184.CrossRefGoogle Scholar
31. Texier, B. & Zumbrun, K. 2011 Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. Commun. Math. Phys. 302, 151.CrossRefGoogle Scholar
32. Tsuboi, N., Eto, K. & Hayashi, A. K. 2007 Detailed structure of spinning detonation in a circular tube. Combust. Flame 149 (1–2), 144161.CrossRefGoogle Scholar
33. Walter, M. A. T. & da Silva, L. F. F. 2006 Numerical study of detonation stabilization by finite length wedges. AIAA J. 44 (2), 353361.CrossRefGoogle Scholar
34. Wang, B., He, H. & Yu, S. T. J. 2005 Direct calculation of wave implosion for detonation initiation. AIAA J. 43 (10), 21572169.CrossRefGoogle Scholar
35. Watt, S. D. & Sharpe, G. J. 2005 Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech. 522, 329356.CrossRefGoogle Scholar
36. Wood, W. W. 1963 Existence of detonations for large values of the rate parameter. Phys. Fluids 6 (8), 10811090.CrossRefGoogle Scholar
37. Xu, S., Aslam, T. D. & Stewart, D. S. 1997 High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combust. Theor. Model. 1, 113142.CrossRefGoogle Scholar
38. Ziegler, J. L., Deiterding, R., Shepherd, J. E. & Pullin, D. I. 2011 An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys. 230 (20), 75987630.Google Scholar