Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T08:11:50.726Z Has data issue: false hasContentIssue false

Effect of background turbulence on an axisymmetric turbulent jet

Published online by Cambridge University Press:  04 November 2013

B. Khorsandi
Affiliation:
Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montréal, QC, H3A 0C3, Canada
S. Gaskin
Affiliation:
Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montréal, QC, H3A 0C3, Canada
L. Mydlarski*
Affiliation:
Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, H3A 0C3, Canada
*
Email address for correspondence: [email protected]

Abstract

The effect of different levels of background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers has been investigated. Approximately homogeneous and isotropic background turbulence was generated by a random jet array and had a negligible mean flow (${\langle {U}_{\alpha } \rangle }/ {u}_{\alpha \mathit{rms}} \ll 1$). Velocity measurements of a jet issuing into two different levels of background turbulence were conducted for three different jet Reynolds numbers. The results showed that the mean axial velocities decay faster with increasing level of background turbulence (compared with a jet in quiescent surroundings), while the mean radial velocities increase, especially close to the edges of the jet. Furthermore, the axial root-mean-square velocities of the jet increased in the presence of background turbulence, as did the jet’s width. However, the mass flow rate of the jet decreased, from which it can be inferred that the entrainment into the jet is reduced in a turbulent background. The effect of background turbulence on the entrainment mechanisms is discussed.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. L. & Roshko, A. 1974 Large scales in the developing mixing layer. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Ching, C. Y., Fernando, H. J. S. & Robles, A. 1995 Break down of line plumes in turbulent environments. J. Geophys. Res. 100 (C3), 47074713.Google Scholar
Corsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. NACA Rep. No. 1244.Google Scholar
Cuthbertson, A. J. S., Malcangio, D., Davies, P. A. & Mossa, M. 2006 The influence of a localized region on turbulence on the structural development of a turbulent, round, buoyant jet. Fluid Dyn. Res. 38, 683698.Google Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25, 12161223.CrossRefGoogle Scholar
Dahm, W. J. A. & Dimotakis, P. E. 1990 Mixing at large Schmidt number in the self-similar far field of turbulent jets. J. Fluid Mech. 217, 299330.Google Scholar
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.Google Scholar
Fabris, G. 1979 Conditional sampling study of the turbulent wake of a cylinder. Part 1. J. Fluid Mech. 94 (4), 673709.CrossRefGoogle Scholar
Ferdman, E., Ötügen, M. V. & Kim, S. 2000 Effect of initial velocity profile on the development of round jets. J. Propul. Power 16, 676686.Google Scholar
Fernando, H. J. S. & De Silva, I. P. D. 1993 Note on secondary flows in oscillating-grid, mixing-box experiments. Phys. Fluids A5 (7), 18491851.Google Scholar
Gaskin, S., McKernan, M. & Xue, F. 2004 The effect of background turbulence on jet entrainment: an experimental study of a plane jet in a shallow coflow. J. Hydraul Res. 42 (5), 531540.Google Scholar
George, W. K. 1989 The self preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. George, W. K. & Arndt, R. E. A.), pp. 3972. Hemisphere.Google Scholar
Gharbi, A., Amielh, M. & Anselmet, F. 1995 Experimental investigation of turbulence properties in the interface region of variable density jets. Phys. Fluids 7, 24442454.CrossRefGoogle Scholar
Guo, Y., Davies, P. A., Fernando, H. J. S. & Ching, C. Y. 1999 Influence of background turbulence on the evolution of turbulent jets. In Conference Proceedings of the 28th IAHR Congress. International Association of Hydro-Environment Engineering and Research (IAHR).Google Scholar
Guo, Y., Malcangio, D., Davies, P. A. & Fernando, H. J. S. 2005 A laboratory investigation into the influence of a localized region on turbulence on the evolution of a round turbulent jet. Fluid Dyn. Res. 36, 7889.Google Scholar
Hopfinger, E. J. & Toly, J. A. 1976 Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech. 78, 155175.CrossRefGoogle Scholar
Hunt, J. C. R. 1994 Atmospheric jets and plumes. In Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (ed. Davies, P. A. & Valente Neves, M. I.), NATO ASI Series E, vol. 255, pp. 309334.CrossRefGoogle Scholar
Hurther, D. & Lemmin, U. 2008 Improved turbulence profiling with field-adapted acoustic Doppler velocimeters using a bifrequency Doppler noise suppression method. J. Atmos. Ocean. Technol. 25 (3), 452463.CrossRefGoogle Scholar
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity-measurements in a high-Reynolds-number, momentum-conserving, axisymmetrical, turbulent jet. J. Fluid Mech. 258, 3175.Google Scholar
Khorsandi, B. 2011 Effect of background turbulence on an axisymmetric turbulent jet. PhD dissertation, McGill University. http://escholarship.mcgill.ca.Google Scholar
Khorsandi, B., Mydlarski, L. & Gaskin, S. 2012 Noise in turbulence measurements using acoustic Doppler velocimetry. J. Hydraul. Engng 138 (10), 829838.CrossRefGoogle Scholar
Lavertu, T. M., Mydlarski, L. & Gaskin, S. J. 2008 Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J. Fluid Mech. 612, 439475.Google Scholar
Law, A. W. K., Cheng, N. S. & Davidson, M. J. 2001 Jet spreading in oscillating-grid turbulence. In Proceedings of the 3rd International Symposium on Environmental Hydraulics, pp. 16. International Association of Hydro-Environment Engineering and Research (IAHR).Google Scholar
Mathew, J. & Basu, A. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 20652072.Google Scholar
Maxey, M. R. 1987 The velocity skewness measured in grid turbulence. Phys. Fluids 30, 935939.Google Scholar
McDougall, T. J. 1979 Measurements of turbulence in a zero-mean shear mixed layer. J. Fluid Mech. 94 (3), 409431.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.CrossRefGoogle Scholar
Nikora, V. I. & Goring, D. G. 1998 ADV measurements of turbulence: can we improve their interpretation? J. Hydraul. Engng 124 (6), 630634.CrossRefGoogle Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.CrossRefGoogle Scholar
Phillips, O. M. 1955 The irrotational motion outside a free turbulent boundary. Math. Proc. Camb. Phil. Soc. 51, 220229.Google Scholar
Pope, S. B. 2000 Turbulent Flow. Cambridge University Press.CrossRefGoogle Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.Google Scholar
Thompson, S. & Turner, J. S. 1975 Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech. 67, 349368.Google Scholar
Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. J. Fluid Mech. 549, 429441.CrossRefGoogle Scholar
Tordella, D. & Iovieno, M. 2012 Decaying turbulence: what happens when the correlation length varies spatially in two adjacent zones. Physica D 241, 178185.Google Scholar
Tordella, D., Iovieno, M. & Bailey, P. R. 2008 Sufficient condition for Gaussian departure in turbulence. Phys. Rev. E 77, 016309.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tsai, Y. S., Hunt, J. C. R., Nieuwstadt, F. T. M., Westerweel, J. & Gunasekaran, B. P. N. 2007 Effect of strong external turbulence on a wall jet boundary layer. Flow Turbul. Combust. 79, 155174.Google Scholar
Variano, E. A., Bodenschatz, E. & Cowen, E. A. 2004 A random synthetic jet array driven turbulence tank. Exp. Fluids 37, 613615.Google Scholar
Variano, E. A. & Cowen, E. A. 2008 A random-jet-stirred turbulence tank. J. Fluid Mech. 604, 132.Google Scholar
Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207, 191229.Google Scholar
Voulgaris, G. & Trowbridge, J. H. 1998 Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol. 15, 272289.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent/non-turbulent interface of a jet. Phys. Rev. Lett. 95, 174501.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.Google Scholar
Wright, S. J. 1994 The effect of ambient turbulence on jet mixing. In Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes (ed. Davies, P. A. & Valente Neves, M. I.), NATO ASI Series E, vol. 255, pp. 1327.Google Scholar
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577612.Google Scholar
Xu, G. & Antonia, R. A. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677683.Google Scholar