Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T22:00:49.530Z Has data issue: false hasContentIssue false

Dynamo action in complex flows: the quick and the fast

Published online by Cambridge University Press:  25 April 2008

STEVEN M. TOBIAS
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
FAUSTO CATTANEO
Affiliation:
Department of Astronomy and Astrophysics and The Computation Institute, University of Chicago, Chicago, IL 60637, USA

Abstract

We consider the kinematic dynamo problem for a velocity field consisting of a mixture of turbulence and coherent structures. For these flows the dynamo growth rate is determined by a competition between the large flow structures that have large magnetic Reynolds number but long turnover times and the small ones that have low magnetic Reynolds number but short turnover times. We introduce the concept of a quick dynamo as one that reaches its maximum growth rate in some (small) neighbourhood of its critical magnetic Reynolds number. We argue that if the coherent structures are quick dynamos, the overall dynamo growth rate can be predicted by looking at those flow structures that have spatial and temporal scales such that their magnetic Reynolds number is just above critical. We test this idea numerically by studying 2.5-dimensional dynamo action which allows extreme parameter values to be considered. The required velocities, consisting of a mixture of turbulence with a given spectrum and long-lived vortices (coherent structures), are obtained by solving the active scalar equations. By using spectral filtering we demonstrate that the scales responsible for dynamo action are consistent with those predicted by the theory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1950 On the spontaneous magnetic field in a conducting liquid in a turbulent motion. Proc. R. Soc. Lond. A 201, 405416.Google Scholar
Boldyrev, S. & Cattaneo, F. 2004 Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92 (14), 144501.CrossRefGoogle ScholarPubMed
Brummell, N. H., Cattaneo, F. & Tobias, S. M. 2001 Linear and nonlinear dynamo properties of time-dependent ABC flows. Fluid Dyn. Res. 28, 237265.CrossRefGoogle Scholar
Cattaneo, F. & Tobias, S. M. 2005 Interaction between dynamos at different scales. Phys. Fluids 17, 127105 16.CrossRefGoogle Scholar
Constantin, P., Nie, Q. & Schörghofer, N. 1998 Nonsingular surface quasi-geostrophic flow. Phys. Lett. A 241, 168172.CrossRefGoogle Scholar
Galloway, D. J. & Proctor, M. R. E. 1992 Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature 356, 691693.CrossRefGoogle Scholar
Held, I. M., Pierrehumbert, R. T., Garner, S. T. & Swanson, K. L. 1995 Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 120.CrossRefGoogle Scholar
Kazantsev, A. P. 1968 Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 10311031.Google Scholar
Kraichnan, R. H. & Nagarajan, S. 1967 Growth of turbulent magnetic fields. Phys. Fluids 10, 859870.CrossRefGoogle Scholar
Llewellyn-Smith, S. G. & Tobias, S. M. 2004 Vortex dynamos. J. Fluid Mech. 498, 121.CrossRefGoogle Scholar
McWilliams, J. C. 1984 The emergence of coherent isolated vortices in turbulent flow. J. Fluid Mech. 146, 2143.CrossRefGoogle Scholar
Otani, N. F. 1993 A fast kinematic dynamo in two-dimensional time-dependent flows. J. Fluid Mech. 253, 327340.CrossRefGoogle Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields: Their Origin and their Activity. Clarendon; Oxford University Press.Google Scholar
Pierrehumbert, R. T., Held, I. M. & Swanson, K. L. 1995 Spectra of local and nonlocal two dimensional turbulence. Chaos, Solitons Fractals 4, 11111116.CrossRefGoogle Scholar
Ponty, Y., Mininni, P. D., Montgomery, D. C., Pinton, J.-F., Politano, H. & Pouquet, A. 2005 Numerical study of dynamo action at low magnetic Prandtl number. Phys. Rev. Lett. 94, 164502-14CrossRefGoogle Scholar
Ponty, Y., Politano, H. & Pinton, J.-F. 2004 Simulation of induction at low magnetic Prandtl number. Phys. Rev. Lett. 92, 144503-14CrossRefGoogle ScholarPubMed
Roberts, G. O. 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. Lond. A 271, 411454.Google Scholar
Saffman, P. G. 1963 On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech. 16, 545572.CrossRefGoogle Scholar
Schekochihin, A. A., Cowley, S. C., Maron, J. L. & McWilliams, J. C. 2004 Critical Magnetic Prandtl Number for Small-Scale Dynamo. Phys. Rev. Lett. 92 (5), 054502–+.CrossRefGoogle ScholarPubMed
Schekochihin, A. A., Haugen, N. E. L., Brandenburg, A., Cowley, S. C., Maron, J. L. & McWilliams, J. C. 2005 The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers. Astrophys. J. 625, L115L118.CrossRefGoogle Scholar
Thomson, D. J. & Devenish, B. J. 2005 Particle pair separation in kinematic simulations. J. Fluid Mech. 526, 277302.CrossRefGoogle Scholar
Vainshtein, S. I. & Kichatinov, L. L. 1986 The dynamics of magnetic fields in a highly conducting turbulent medium and the generalized Kolmogorov-Fokker-Planck equations. J. Fluid Mech. 168, 7387.CrossRefGoogle Scholar
Zel'dovich, Y. B. 1957 The magnetic field in the two dimensional motion of a conducting turbulent liquid. Sov. Phys. JETP 4, 460462.Google Scholar