Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T09:20:28.840Z Has data issue: false hasContentIssue false

Dynamics of a macroscopic elastic fibre in a polymeric cellular flow

Published online by Cambridge University Press:  20 March 2017

Qiang Yang
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
Lisa Fauci*
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
*
Email address for correspondence: [email protected]

Abstract

We study the dynamics and transport of an elastic fibre in a polymeric cellular flow. The macroscopic fibre is much larger than the infinitesimal immersed polymer coils distributed in the surrounding viscoelastic fluid. Here we consider low-Reynolds-number flow using the Navier–Stokes/Fene-P equations in a two-dimensional, doubly periodic domain. The macroscopic fibre supports both tensile and bending forces, and is fully coupled to the viscoelastic fluid using an immersed boundary framework. We examine the effects of fibre flexibility and polymeric relaxation times on fibre buckling and transport as well as the evolution of polymer stress. Non-dimensional control parameters include the Reynolds number, the Weissenberg number, and the elasto-viscous number of the macroscopic fibre. We find that large polymer stresses occur in the fluid near the ends of the fibre when it is compressed. In addition, we find that viscoelasticity hinders a fibre’s ability to traverse multiple cells in the domain.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balci, N., Thomases, B., Renardy, M. & Doering, C. R. 2011 Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166, 546553.CrossRefGoogle Scholar
Becker, L. E. & Shelley, M. 2001 Instability of elastic filaments in shear flow yields first-normal stress differences. Phys. Rev. Lett. 87, 198301.CrossRefGoogle ScholarPubMed
Chrispell, J. C., Fauci, L. & Shelley, M. 2013 An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid. Phys. Fluids 25, 013103.CrossRefGoogle Scholar
Fauci, L. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid. Mech. 38, 371394.CrossRefGoogle Scholar
Forgacs, O. L. & Mason, S. G. 1959 Particle motions in sheared suspensions: X Orbits of flexible threadlike particles. J. Colloid Sci. 14, 473491.CrossRefGoogle Scholar
Harasim, M., Wunderlich, B., Peleg, O., Kroger, M. & Bausch, A. 2013 Direct observation of the dynamics of semiflexible polymers in shear flow. Phys. Rev. Lett. 110, 108302.CrossRefGoogle ScholarPubMed
Kantsler, V. & Goldstein, R. 2012 Fluctuations, dynamics, and the stretch–coil transition of a single actin filament in extensional flow. Phys. Rev. Lett. 108, 038103.CrossRefGoogle Scholar
Karp-Boss, L. & Jumars, P. A. 1998 Motion of diatom chains in steady shear flow. Limnol. Oceanogr. 43 (8), 17671773.CrossRefGoogle Scholar
Lai, M.-C. & Peskin, C. S. 2000 An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705719.CrossRefGoogle Scholar
Larson, R. G. 1998 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Manikantan, H. & Saintillan, D. 2013 Subdiffusive transport of fluctuating elastic filaments in cellular flow. Phys. Fluids 25, 073603.CrossRefGoogle Scholar
Nguyen, H. & Fauci, L. 2014 Hydrodynamics of diatom chains and semiflexible fibres. J. R. Soc. Interface 11, 20140314.CrossRefGoogle ScholarPubMed
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Phan-Thien, N. 2002 Understanding Viscoelasticity. Springer.CrossRefGoogle Scholar
Quennouz, N., Shelley, M., du Roure, O. & Lindner, A. 2015 Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech. 769, 387402.CrossRefGoogle Scholar
Skjetne, P., Ross, R. F. & Klingenberg, D. J. 1997 Simulation of single fiber dynamics. J. Chem. Phys. 107, 2108.CrossRefGoogle Scholar
Stockie, J. & Green, S. 1998 Simulating the motion of flexible pulp fibres using the immersed boundary method. J. Comput. Phys. 147, 147165.CrossRefGoogle Scholar
Teran, J., Fauci, L. & Shelley, M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104, 038101.CrossRefGoogle ScholarPubMed
Thomases, B. & Guy, R. D. 2014 Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113, 098102.CrossRefGoogle ScholarPubMed
Thomases, B. & Shelley, M. 2007 Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19, 103103.CrossRefGoogle Scholar
Tornberg, A. K. & Shelley, M 2007 Simulating the dynamics and interactions of elastic filaments in Stokes flow. J. Comput. Phys. 196, 840.CrossRefGoogle Scholar
Wandersman, E., Quennouz, N., Fermigier, M., Lindner, A. & du Roure, O. 2010 Buckled in translation. Soft Matt. 6, 57155719.CrossRefGoogle Scholar
Young, Y. N. & Shelley, M. 2007 Transition and transport of fibers in cellular flows. Phys. Rev. Lett. 99, 058303.CrossRefGoogle ScholarPubMed