Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T11:23:14.118Z Has data issue: false hasContentIssue false

Dynamics of a liquid plug in a capillary tube under cyclic forcing: memory effects and airway reopening

Published online by Cambridge University Press:  12 January 2018

S. Signe Mamba
Affiliation:
Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, International laboratory LIA/LICS, F-59000 Lille, France
J. C. Magniez
Affiliation:
Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, International laboratory LIA/LICS, F-59000 Lille, France
F. Zoueshtiagh
Affiliation:
Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, International laboratory LIA/LICS, F-59000 Lille, France
M. Baudoin*
Affiliation:
Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, International laboratory LIA/LICS, F-59000 Lille, France
*
Email address for correspondence: [email protected]

Abstract

In this paper, we investigate both experimentally and theoretically the dynamics of a liquid plug driven by a cyclic periodic forcing inside a cylindrical rigid capillary tube. First, it is shown that, depending on the type of forcing (flow rate or pressure cycle), the dynamics of the liquid plug can either be stable and periodic, or conversely accelerative and eventually leading to plug rupture. In the latter case, we identify the sources of the instability as: (i) the cyclic diminution of the plug viscous resistance to motion due to the decrease in the plug length and (ii) a cyclic reduction of the plug interfacial resistance due to a lubrication effect. Since the flow is quasi-static and the forcing periodic, this cyclic evolution of the resistances relies on the existence of flow memories stored in the length of the plug and the thickness of the trailing film. Second, we show that, contrary to unidirectional pressure forcing, cyclic forcing enables breaking of large plugs in a confined space although it requires longer times. All the experimentally observed tendencies are quantitatively recovered from an analytical model. This study not only reveals the underlying physics but also opens up the prospect for the simulation of ‘breathing’ of liquid plugs in complex geometries and the determination of optimal cycles for obstructed airways reopening.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assmann, N. & von Rohr, P. R. 2011 Extraction in microreactors: intensification by adding an inert gas phase. Chem. Engng Process 50 (8), 822827.Google Scholar
Aussillous, P. & Quéré, D. 2000 Quick deposition of a fluid on the wall of a tube. Phys. Fluids 12 (10), 23672371.CrossRefGoogle Scholar
Barber, M. & Blaisdell, C. J. 2010 Respiratory causes of infant mortality: progress and challenges. Am. J. Perinat. 27 (7), 549558.Google Scholar
Baudoin, M., Song, Y., Manneville, P. & Baroud, C. N. 2013 Airway reopening through catastrophic events in a hierarchical network. Proc. Natl Acad. Sci. USA 110 (3), 859864.CrossRefGoogle Scholar
Bico, J. & Quéré, D. 2001 Falling slugs. J. Colloid Interface Sci. 243 (1), 262264.Google Scholar
Bretherton 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.CrossRefGoogle Scholar
Burger, E. J. & Macklem, P. 1968 Airway closure: demonstration by breathing 100 percent O2 at low lung volumes and by N2 washout. J. Appl. Phys. 25 (2), 139148.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Dover.Google Scholar
Chebbi, R. 2003 Deformation of advancing gas–liquid interfaces in capillary tubes. J. Colloid Interface Sci. 265 (1), 166173.Google Scholar
Di Meglio, F.2011 Dynamics and control of slugging in oil production. PhD thesis, Ecole Nationale Supérieure des Mines de Paris.Google Scholar
Dias, M. M. & Payatakes, A. C. 1986 Network models for two-phase flow in porous media. Part 1. Immiscible microdisplacement of non-wetting fluids. J. Fluid Mech. 164, 305336.Google Scholar
Dietze, G. F. & Ruyer-Quil, C. 2015 Films in narrow tubes. J. Fluid Mech. 762, 68109.CrossRefGoogle Scholar
Duclaux, V., Clanet, C. & Quéré, D. 2006 The effects of gravity on the capillary instability in tubes. J. Fluid Mech. 556, 217226.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865930.CrossRefGoogle Scholar
Engle, W. A.& the American Academy of Pediatrics Committee on Fetus and Newborn 2008 Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics 121 (2), 419432.Google Scholar
Fairbrother, F. & Stubbs, A. E. 1935 Studies in electro-endosmosis. J. Chem. Soc. 0, 527529.Google Scholar
Fries, D. M., Trachsel, F. & von Rohr, P. R. 2008 Segmented gas–liquid flow characterization in rectangular microchannels. Intl J. Multiphase Flow 34 (12), 11081118.CrossRefGoogle Scholar
Fujioka, H. & Grotberg, J. B. 2004 Steady propagation of a liquid plug in a two-dimensional channel. J. Biomed. Engng 126 (5), 567577.Google Scholar
Fujioka, H. & Grotberg, J. B. 2005 The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids 17 (8), 082102.Google Scholar
Fujioka, H., Halpern, D., Ryans, J. & Gaver, D. P. III 2016 Reduced-dimension model of liquid plug propagation in tubes. Phys. Rev. Fluids 1 (5), 053201.Google Scholar
Fujioka, H., Takayama, S. & Grotberg, J. B. 2008 Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys. Fluids 20 (6), 062104.Google Scholar
Griese, M., Birrer, P. & Demirsoy, A. 1997 Pulmonary surfactant in cystic fibrosis. Eur. Respir. J. 10 (9), 19831988.Google Scholar
Grotberg, J. B. 2011 Respiratory fluid mechanics. Phys. Fluids 23 (2), 021301.CrossRefGoogle ScholarPubMed
Gunther, A., Khan, S. A., Thalmann, M., Trachsel, F. & Jensen, K. F. 2004 Transport and reaction in microscale segmented gas–liquid flow. Lab on a Chip 4 (4), 278286.Google Scholar
Guttfinger, C. & Tallmadge, J. A. 1965 Films of non-Newtonian fluids adhering to flat plates. AIChe 11 (3), 403413.CrossRefGoogle Scholar
Havre, K., Stornes, K. O. & Stray, H. 2000 Taming slug flow in pipelines. ABB Rev. 4, 5563.Google Scholar
Hazel, A. L. & Heil, M. 2002 The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section. J. Fluid Mech. 470, 91114.Google Scholar
Heil, M., Hazel, A. L. & Smith, J. A. 2008 The mechanics of airway closure. Respir. Physiol. Neurobiol. 163 (1), 214221.Google Scholar
Hewson, R. W., Kapur, N. & Gaskell, P. 2009 A model for film-forming with Newtonian and shear-thinning fluids. J. Fluid Mech. 162, 2128.Google Scholar
Hirasaki, G. J. & Lawson, J. B. 1985 Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Soc. Petrol. Engng J. 25 (2), 176190.CrossRefGoogle Scholar
Hoang, D. A., Steijn, V. V., Portela, L. M., Kreutzer, M. T. & Kleijn, C. R. 2013 Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method. Comput. Fluids 86, 2836.Google Scholar
Hoffman, R. L. 1975 A study of the advancing interface. Part I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50 (2), 228241.Google Scholar
Hohlfeld, J. M. 2001 The role of surfactant in asthma. Resp. Res. 3 (1), 48.Google Scholar
Howell, P. D., Waters, S. L. & Grotberg, J. B. 2000 The propagation of a liquid bolus along a liquid-lined flexible tube. J. Fluid Mech. 406, 309335.Google Scholar
Hu, Y., Bian, S., Grotberg, J., Filoche, M., White, J., Takayama, S. & Grotberg, J. B. 2015 A microfluidic model to study fluid dynamics of mucus plug rupture in small lung airways. Biomicrofluidics 9 (4), 044119.Google Scholar
Hughes, J. M., Rosenzweig, D. Y. & Kivitz, P. B. 1970 Site of airway closure in excised dog lungs: histologic demonstration. J. Appl. Phys. 29 (3), 340344.Google Scholar
Huh, D., Fujioka, H., Tung, Y., Futai, N., Paine, R., Grotberg, J. B. & Takayama, S. 2007 Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104 (48), 1888618891.CrossRefGoogle ScholarPubMed
Jalaal, M. & Balmforth, N. J. 2016 Long bubbles in tubes filled with viscoplastic fluid. J. Non-Newtonian Fluid Mech. 238, 100106.CrossRefGoogle Scholar
Jensen, O. E. 2000 Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface Sci. 221, 3849.Google Scholar
Kamm, R. D. & Schroter, R. C. 1989 Is airway closure caused by a liquid film instability? Respir. Physiol. 75 (2), 141156.Google Scholar
Klaseboer, E., Gupta, R. & Manica, R. 2014 An extended bretherton model for long Taylor bubbles at moderate capillary numbers. Phys. Fluids 26 (3), 032107.CrossRefGoogle Scholar
Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., Kleijn, C. R. & Heiszwolf, J. J. 2005 Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J. 51 (9), 24282440.Google Scholar
Laborie, B., Rouyer, F., Angelescu, D. E. & Lorenceau, E. 2017 Yield-stress fluid deposition in circular channels. J. Fluid Mech. 818, 838851.CrossRefGoogle Scholar
Ladosz, A., Rigger, E. & von Rohr, P. R. 2016 Pressure drop of three-phase liquid–liquid–gas slug flow in round microchannels. Microfluid Nanofluid 20 (3), 114.Google Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.CrossRefGoogle Scholar
Magniez, J. C., Baudoin, M., Liu, C. & Zoueshtiagh, F. 2016 Dynamics of liquid plugs in prewetted capillary tubes: from acceleration and rupture to deceleration and airway obstruction. Soft Matt. 12 (42), 87108717.Google Scholar
Nimmo, A. J., Carstairs, J. R., Patole, S. K., Whitehall, J., Davidson, K. & Vink, R. 2002 Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin. Exp. Pharmacol. P. 29 (8), 661665.Google Scholar
Park, C. W. & Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.CrossRefGoogle Scholar
Ratulowski, J. & Chang, H.-C. 1989 Transport of gas bubbles in capillaries. Phys. Fluids A 1 (10), 16421655.Google Scholar
Song, Y., Baudoin, M., Manneville, P. & Baroud, C. N. 2011 The air–liquid flow in a microfluidic airway tree. Med. Engng Phys. 33 (7), 849856.Google Scholar
Stark, J. & Manga, M. 2000 The motion of long bubbles in a network of tubes. Trans. Porous Med. 40 (2), 201218.Google Scholar
Suresh, V. & Grotberg, J. B. 2005 The effect of gravity on liquid plug propagation in a two-dimensional channel. Phys. Fluids 17 (3), 031507.Google Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (9), 1473.Google Scholar
Taylor 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10 (2), 161165.Google Scholar
Van’t Veen, A., Wollmer, P., Nilsson, L. E., Gommers, D., Mouton, J. W., Kooij, P. P. M. & Lachmann, B. 1998 Lung distribution of intratracheally instilled Tc-99m-tobramycin-surfactant mixture in rats with a Klebsiella pneumoniae lung infection. ACP-Appl. Cardiopul. P. 7 (2), 8794.Google Scholar
Vaughan, B. L. & Grotberg, J. B. 2016 Splitting of a two-dimensional liquid plug at an airway bifurcation. J. Fluid Mech. 793, 120.CrossRefGoogle Scholar
Warnier, M. J. F., De Croon, M. H. J. M., Rebrov, E. V. & Schouten, J. C. 2010 Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers. Microfluid Nanofluid 8 (1), 3345.CrossRefGoogle Scholar
Waters, S. L. & Grotberg, J. B. 2002 The propagation of a surfactant laden liquid plug in a capillary tube. Phys. Fluids 14 (2), 471480.CrossRefGoogle Scholar
Weiss, E. B., Faling, L. J., Mintz, S., Brooks, S. M., Chodosh, S. & Segal, M. S. 1969 Acute respiratory failure in chronic obstructive pulmonary disease. Part I. Pathology. Dm-Dis. Mon. 15 (11), 158.Google Scholar
White, J. P. & Heil, M. 2005 Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film fluid–structure interaction model. Phys. Fluids 17 (3), 031506.CrossRefGoogle Scholar
Wong, H., Radke, C. J. & Morris, S. 1995a The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J. Fluid Mech. 292, 7194.CrossRefGoogle Scholar
Wong, H., Radke, C. J. & Morris, S. 1995b The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. J. Fluid Mech. 292, 95110.Google Scholar
Wright, S. M., Hockey, P. M., Enhorning, G., Strong, P., Reid, K. B. M., Holgate, S. T., Djukanovic, R. & Postle, A. D. 2000 Altered airway surfactant phospholipid composition and reduced lung function in asthma. J. Appl. Phys. 89 (4), 12831292.Google ScholarPubMed
Zamankhan, P., Helenbrook, B. T., Takayama, S. & Grotberg, J. B. 2012 Steady motion of Bingham liquid plugs in two-dimensional channels. J. Fluid Mech. 705, 258279.Google Scholar
Zheng, Y., Fujioka, H., Bian, S., Torisawa, Y., Huh, D., Takayama, S. & Grotberg, J. B. 2009 Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids 21 (7), 071903.Google Scholar
Zheng, Y., Fujioka, H. & Grotberg, J. B. 2007 Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel. Phys. Fluids 19 (8), 082107.Google Scholar

Signe Mamba et al. supplementary movie 1

Movie showing the temporal evolution of a single liquid plug of initial length $L_0=1.05mm $ pushed with the cyclic flow rate forcing in a cylindrical capillary tube of radius $R_c = 0.47mm$. The movie was shot with a Photron SA3 high speed camera mounted on a Z16 Leica Microscope at a frame rate of $125$ images per second, a trigger time of $1/3000 s$ and a resolution of $1024 \times 64$ pixels. a. Initial state b. Final state.

Download Signe Mamba et al. supplementary movie 1(Video)
Video 2.7 MB
Supplementary material: PDF

Signe Mamba et al. supplementary material

Supplementary captions

Download Signe Mamba et al. supplementary material(PDF)
PDF 163.3 KB

Signe Mamba et al. supplementary movie 2

Movie showing the temporal evolution of a single liquid plug of initial length $L_0 = 3.39mm $ pushed with the pressure cyclic forcing in a cylindrical capillary tube of radius $R_c = 0.47mm$. The movie was shot with a Photron SA3 high speed camera mounted on a Z16 Leica Microscope at a frame rate of $125$ images per second, a trigger time of $1/3000 s$ and a resolution of $1024 \times 64$ pixels a. Initial state b. End of the cycle there is no more plug and only liquid remains on the walls of the capillary tube.

Download Signe Mamba et al. supplementary movie 2(Video)
Video 1.2 MB

Signe Mamba et al. supplementary movie 3

Movie showing the temporal evolutions of a single liquid plug of initial length $L1=2.5mm$ pushed with the pressure cyclic forcing in a cylindrical capillary tube of radius $R_c = 0.47mm$. The movie was shot with a Photron SA3 high speed camera mounted on a Z16 Leica Microscope at a frame rate of $125$ images per second, a trigger time of $1/3000 s$ and a resolution of $1024 \times 64$ pixels a. Initial state b. Final state.

Download Signe Mamba et al. supplementary movie 3(Video)
Video 938.5 KB

Signe Mamba et al. supplementary movie 4

Movie showing the temporal evolutions of a single liquid plug of initial length $L2=2.85mm$ pushed with the pressure cyclic forcing in a cylindrical capillary tube of radius $R_c = 0.47mm$. In the same cycle, the rupture length of the smaller plug in movie S3 is higher that the one for the bigger plug. The movie was shot with a Photron SA3 high speed camera mounted on a Z16 Leica Microscope at a frame rate of $125$ images per second, a trigger time of $1/3000 s$ and a resolution of $1024 imes 64$ pixels a. Initial state b. Final state.

Download Signe Mamba et al. supplementary movie 4(Video)
Video 1.2 MB