Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T02:03:04.513Z Has data issue: false hasContentIssue false

Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic excitation

Published online by Cambridge University Press:  19 February 2019

G. Karapetsas
Affiliation:
Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece
D. Photeinos
Affiliation:
Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece
Y. Dimakopoulos
Affiliation:
Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece
J. Tsamopoulos*
Affiliation:
Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras 26500, Greece
*
Email address for correspondence: [email protected]

Abstract

We investigate the dynamics of the buoyancy-driven rise of a bubble inside a viscoplastic material when it is subjected to an acoustic pressure field. To this end, we develop a simplified model based on the Lagrangian formalism assuming a pulsating bubble with a spherical shape. Moreover, to account for the effects of a deformable bubble, we also perform detailed two-dimensional axisymmetric simulations. Qualitative agreement is found between the simplified approach and the detailed numerical simulations. Our results reveal that the acoustic excitation enhances the mobility of the bubble, by increasing the size of the yielded region that surrounds the bubble, thereby decreasing the effective viscosity of the liquid and accelerating the motion of the bubble. This effect is significantly more pronounced at the resonance frequency, and it is shown that bubble motion takes place even for Bingham numbers (Bn) that can be orders of magnitude higher than the critical Bn for bubble entrapment in the case of a static pressure field.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACI Committee1993 Behavior of Fresh Concrete During Vibration (ACI 309.1 R-93). American Concrete Institute, Detroit.Google Scholar
ACI Committee1996 Guide for Consolidation of Concrete (ACI 309R-96). American Concrete Institute, Detroit.Google Scholar
Astarita, G. & Apuzzo, G. 1965 Motion of gas bubbles in non-Newtonian liquids. AIChE J. 11, 815820.10.1002/aic.690110514Google Scholar
Bhavaraju, S. M., Mashelkar, R. A. & Blanch, H. W. 1978 Bubble motion and mass transfer in non-Newtonian fluids: part I. Single bubble in power law and Bingham fluids. AIChE J. 24, 10631070.10.1002/aic.690240618Google Scholar
Blanch, H. W. & Bhavaraju, S. M. 1976 Bioengineering report. Non-Newtonian fermentation broths: rheology and mass transfer. Biotechnol. Bioengng 18 (6), 745790.10.1002/bit.260180602Google Scholar
Brennen, C. E. 2014 Cavitation and Bubble Dynamics. Cambridge University Press.Google Scholar
British Petroleum Team2010 Deep Water Horizon: Accident Investigation Report.Google Scholar
Brujan, E.-A. 2009 Cavitation bubble dynamics in non-Newtonian fluids. Polym. Engng Sci. 49, 419431.10.1002/pen.21292Google Scholar
Campbell, G. 2016 Bubbles in Food 2: Novelty, Health and Luxury. Elsevier.Google Scholar
Ceschia, M. & Nabergoj, R. 1978 On the motion of a nearly spherical bubble in a viscous liquid. Phys. Fluids 21, 140141.10.1063/1.862075Google Scholar
Chakraborty, B. B. & Tuteja, G. S. 1993 Motion of an expanding, spherical gas bubble in a viscous liquid under gravity. Phys. Fluids A 5 (8), 18791882.10.1063/1.858813Google Scholar
Chan, K. S. & Yang, W.-J. 1969 Bubble dynamics in a non-Newtonian fluid subject to periodically varying pressures. J. Acoust. Soc. Am. 46, 205210.10.1121/1.1911671Google Scholar
Chatzidai, N., Dimakopoulos, Y. & Tsamopoulos, J. 2011 Viscous effects on the oscillations of two equal and deformable bubbles under a step change in pressure. J. Fluid Mech. 673, 513547.10.1017/S0022112010006361Google Scholar
Chatzidai, N., Giannousakis, A., Dimakopoulos, Y. & Tsamopoulos, J. 2009 On the elliptic mesh generation in domains containing multiple inclusions and undergoing large deformations. J. Comput. Phys. 228, 19802011.10.1016/j.jcp.2008.11.020Google Scholar
Cunha, F. R. & Albernaz, D. L. 2013 Oscillatory motion of a spherical bubble in a non-Newtonian fluid. J. Non-Newt. Fluid Mech. 191, 3544.10.1016/j.jnnfm.2012.10.010Google Scholar
Dimakopoulos, Y., Karapetsas, G., Malamataris, N. A. & Mitsoulis, E. 2012 The free (open) boundary condition at inflow boundaries. J. Non-Newtonian Fluid Mech. 187–188, 1631.10.1016/j.jnnfm.2012.09.001Google Scholar
Dimakopoulos, Y., Makrigiorgos, G., Georgiou, G. C. & Tsamopoulos, J. 2018 The PAL (penalized augmented Lagrangian) method for computing viscoplastic flows: a new fast converging scheme. J. Non-Newtonian Fluid Mech. 256, 2341.10.1016/j.jnnfm.2018.03.009Google Scholar
Dimakopoulos, Y., Pavlidis, M. & Tsamopoulos, J. 2013 Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model. J. Non-Newtonian Fluid Mech. 200, 3451.10.1016/j.jnnfm.2012.10.012Google Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2003 A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations. J. Comput. Phys. 192, 494522.10.1016/j.jcp.2003.07.027Google Scholar
Doinikov, A. A. 2002 Translational motion of a spherical bubble in an acoustic standing wave of high intensity. Phys. Fluids 14, 14201425.10.1063/1.1458597Google Scholar
Doinikov, A. A. 2004 Translational motion of a bubble undergoing shape oscillations. J. Fluid Mech. 501, 124.10.1017/S0022112003006220Google Scholar
Dubash, N. & Frigaard, I. 2004 Conditions for static bubbles in viscoplastic fluids. Phys. Fluids 16, 43194330.10.1063/1.1803391Google Scholar
Dubash, N. & Frigaard, I. 2007 Propagation and stopping of air bubbles in Carbopol solutions. J. Non-Newtonian Fluid Mech. 142, 123134.10.1016/j.jnnfm.2006.06.006Google Scholar
Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29, 201243.10.1146/annurev.fluid.29.1.201Google Scholar
Foteinopoulou, K., Mavrantzas, V., Dimakopoulos, Y. & Tsamopoulos, J. 2006 Numerical simulation of multiple bubbles growing in a Newtonian liquid filament undergoing stretching. Phys. Fluids 18, 042106.10.1063/1.2194931Google Scholar
Fraggedakis, D., Dimakopoulos, Y. & Tsamopoulos, J. 2016a Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids. Soft Matt. 12, 53785401.10.1039/C6SM00480FGoogle Scholar
Fraggedakis, D., Dimakopoulos, Y. & Tsamopoulos, J. 2016b Yielding the yield stress analysis: a thorough comparison of recently proposed elastoviscoplastic (EVP) fluid models. J. Non-Newtonian Fluid Mech. 236, 104122.10.1016/j.jnnfm.2016.09.001Google Scholar
Fraggedakis, D., Dimakopoulos, Y. & Tsamopoulos, J. 2016c On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid. J. Fluid Mech. 789, 310346.10.1017/jfm.2015.740Google Scholar
Gordillo, J. M., Lalanne, B., Risso, F., Legendre, D. & Tanguy, S. 2012 Unsteady rising of a clean bubble in low viscosity liquid. Bubble Sci. Engng Technol. 4 (1), 411.10.1179/1758897912Y.0000000002Google Scholar
Johnson, A. & White, D. B. 1991 Gas-rise velocities during kicks. SPE Drilling Engineering 6, 257263.10.2118/20431-PAGoogle Scholar
Joseph, D. D. 2006 Potential flow of viscous fluids: historical notes. Intl J. Multiphase Flow 32, 285310.10.1016/j.ijmultiphaseflow.2005.09.004Google Scholar
Joseph, D. D. & Liao, T. Y. 1994 Potential flows of viscous and viscoelastic fluids. J. Fluid Mech. 265, 123.10.1017/S0022112094000741Google Scholar
Joseph, D. D. & Wang, J. 2004 The dissipation approximation and viscous potential flow. J. Fluid Mech. 505, 365377.10.1017/S0022112004008602Google Scholar
Ichihara, M. & Nishimura, T. 2011 Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation (ed. Meyers, R.), (Extreme Environmental Events) . Springer.10.1007/978-1-4419-7695-6_39Google Scholar
Islam, M. T., Ganesan, P. & Cheng, J. 2015 A pair of bubbles rising dynamics in a xanthan gum solution: a CFD study. RSC Adv. 5, 78197831.10.1039/C4RA15728AGoogle Scholar
Iwata, S., Yamada, Y., Takashima, T. & Mori, H. 2008 Pressure-oscillation defoaming for viscoelastic fluid. J. Non-Newtonian Fluid Mech. 151, 3037.10.1016/j.jnnfm.2007.12.001Google Scholar
Krefting, D., Toilliez, J. O., Szeri, A. J., Mettin, R. & Lauterborn, W. 2006 Translation of bubbles subject to weak acoustic forcing and error in decoupling from volume oscillations. J. Acoust. Soc. Am. 120, 670675.10.1121/1.2214132Google Scholar
Lalanne, B., Tanguy, S. & Risso, F. 2013 Effect of rising motion on the damped shape oscillations of drops and bubbles. Phys. Fluids 25, 112107.10.1063/1.4829366Google Scholar
Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.10.1088/0034-4885/73/10/106501Google Scholar
Lopez, W. F., Naccache, M. F. & de Souza Mendes, P. R. 2018 Rising bubbles in yield stress materials. J. Rheol. 62 (1), 209219.10.1122/1.4995348Google Scholar
Matula, T. J. 2003 Bubble levitation and translation under single-bubble sonoluminescence conditions. J. Acoust. Soc. Am. 114 (2), 775781.10.1121/1.1589753Google Scholar
Mougin, N., Magnin, A. & Piau, J. M. 2012 The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid. J. Non-Newtonian Fluid Mech. 171–172, 4255.10.1016/j.jnnfm.2012.01.003Google Scholar
Papaioannou, J., Giannousakis, A., Dimakopoulos, Y. & Tsamopoulos, J. 2014 Bubble deformation and growth inside viscoelastic filaments undergoing very large extensions. Ind. Engng Chem. Res. 53 (18), 75487569.10.1021/ie403311nGoogle Scholar
Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31, 385404.10.1122/1.549926Google Scholar
Papanastasiou, T. C., Malamataris, N. & Ellwood, K. 1992 A new outflow boundary condition. Intl J. Numer. Meth. Fluids 14, 587608.10.1002/fld.1650140506Google Scholar
Pelekasis, N. A. & Tsamopoulos, J. A. 1993a Bjerknes forces between two bubbles. Part I. Response to a step change in pressure. J. Fluid Mech. 254, 467499.10.1017/S0022112093002228Google Scholar
Pelekasis, N. A. & Tsamopoulos, J. A. 1993b Bjerknes forces between two bubbles. Part II. Response to an oscillatory pressure field. J. Fluid Mech. 254, 501527.10.1017/S002211209300223XGoogle Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145185.10.1146/annurev.fl.09.010177.001045Google Scholar
Potapov, A., Spivak, R., Lavrenteva, O. & Nir, M. A. 2006 Motion and deformation of drops in Bingham fluid. Ind. Engng Chem. Res. 45 (21), 69856995.10.1021/ie051222eGoogle Scholar
Reddy, A. J. & Szeri, A. J. 2002a Coupled dynamics of translation and collapse of acoustically driven microbubbles. J. Acoust. Soc. Am. 112 (4), 13461352.10.1121/1.1502899Google Scholar
Reddy, A. J. & Szeri, A. J. 2002b Shape stability of unsteadily translating bubbles. Phys. Fluids 14 (7), 22162224.10.1063/1.1483840Google Scholar
Renardy, M. 1997 Imposing ‘No’ boundary condition at outflow: why does it work?. J. Numer. Meth. Fluids 85, 413417.10.1002/(SICI)1097-0363(19970228)24:4<413::AID-FLD507>3.0.CO;2-N3.0.CO;2-N>Google Scholar
Rensen, J., Bosman, D., Magnaudet, J., Ohl, C. D., Prosperetti, A., Togel, A., Verluis, M. & Lohse, D. 2001 Spiraling bubbles: how acoustic and hydrodynamic forces compete. Phys. Rev. Lett. 86 (21), 48194822.10.1103/PhysRevLett.86.4819Google Scholar
Ricciardi, G. & De Bernardis, E. 2016 Dynamics and acoustics of a spherical bubble rising under gravity in an inviscid liquid. J. Acoust. Soc. Am. 140 (3), 14881497.10.1121/1.4962160Google Scholar
Romero, L. A., Torczynski, J. R. & von Winckel, G. 2014 Terminal velocity of a bubble in a vertically vibrated liquid. Phys. Fluids 26, 053301.10.1063/1.4873416Google Scholar
Shaw, S. J. 2006 Translation and oscillation of a bubble under axisymmetric deformation. Phys. Fluids 18, 072104.10.1063/1.2227047Google Scholar
Shaw, S. J. 2009 The stability of a bubble in a weakly viscous liquid subject to an acoustic traveling wave. Phys. Fluids 21, 022104.10.1063/1.3076932Google Scholar
Sikorski, D., Tabureau, H. & de Bruyn, J. R. 2009 Motion and shape of bubbles rising through a yield-stress fluid. J. Non-Newtonian Fluid Mech 159, 1016.10.1016/j.jnnfm.2008.11.011Google Scholar
Singh, J. P. & Denn, M. M. 2008 Interacting two-dimensional bubbles and droplets in a yield-stress fluid. Phys. Fluids 20, 040901.10.1063/1.2912501Google Scholar
Stein, S. & Buggisch, H. 2000 Rise of pulsating bubbles in fluids with a yield stress. Z. Angew. Math. Mech. 80, 827834.10.1002/1521-4001(200011)80:11/12<827::AID-ZAMM827>3.0.CO;2-53.0.CO;2-5>Google Scholar
Terasaka, K. & Tsuge, H. 2001 Bubble formation at a nozzle submerged in viscous liquids having yield stress. Chem. Engng Sci. 56, 32373245.10.1016/S0009-2509(01)00002-1Google Scholar
Tran, A., Rudolph, M. L. & Manga, M. 2015 Bubble mobility in mud and magmatic volcanoes. J. Volcanol. Geotherm. Res. 294, 1124.10.1016/j.jvolgeores.2015.02.004Google Scholar
Tripathi, M., Sahu, K. C., Karapetsas, G. & Matar, O. K. 2015 Bubble rise dynamics in a viscoplastic material. J. Non-Newtonian Fluid Mech. 222, 217226.10.1016/j.jnnfm.2014.12.003Google Scholar
Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G. & Pavlidis, M. 2008 Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601, 123164.10.1017/S0022112008000517Google Scholar
Tuteja, G. S., Khattar, D., Chakraborty, B. B. & Bansal, S. 2010 Study of an expanding, spherical gas bubble in a liquid under gravity when the centre moves in a vertical plane. Intl J. Contemp. Math. Sci. 5, 10651075.Google Scholar
de Vries, J., Luther, S. & Lohse, D. 2002 Induced bubble shape oscillations and their impact on the rise velocity. Eur. Phys. J. B 29 (3), 503509.10.1140/epjb/e2002-00332-5Google Scholar
Watanabe, T. & Kukita, Y. 1993 Translational and radial motions of a bubble in an acoustic standing wave field. Phys. Fluids A 5 (11), 26822688.10.1063/1.858731Google Scholar
Yang, B., Prosperetti, A. & Takagi, S. 2003 The transient rise of a bubble subject to shape or volume changes. Phys. Fluids 15 (9), 26402648.10.1063/1.1592800Google Scholar