Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T02:42:08.076Z Has data issue: false hasContentIssue false

Dynamical model for velocity-gradient evolution in compressible turbulence

Published online by Cambridge University Press:  19 August 2011

S. Suman*
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA
S. S. Girimaji
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA
*
Email address for correspondence: [email protected]

Abstract

Velocity-gradient evolution in compressible turbulence is modelled with an autonomous dynamical system of equations that are able to explain important non-isentropic, Mach-number and viscous effects. This enhanced homogenized Euler equation (EHEE) model is validated against the Burgers equation and direct numerical simulation (DNS) computations at the appropriate limits of Mach number. The EHEE model qualitatively captures crucial nonlinear physical features – especially various dilatational aspects of the flow field – observed in DNS over a range of Mach, Reynolds and Prandtl numbers. The model can serve as the basis of more quantitative statistical and stochastic closure models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, J. D. 1998 Hypersonic and High Temperature Gas Dynamics. McGraw-Hill.Google Scholar
2. Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
3. Batchelor, G. K. 1952 The effect of homogenous turbulence on material lines and surfaces. Proc. R. Soc. A 213, 349356.Google Scholar
4. Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F. 2007 Multi-scale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 99, 214501.CrossRefGoogle Scholar
5. Bikkani, R. & Girimaji, S. S. 2007 Role of pressure in non-linear velocity gradient dynamics in turbulence. Phys. Rev. E 75, 036307.CrossRefGoogle Scholar
6. Boratav, O. N., Elghobashi, S. E. & Zhong, R. 1998 On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, non-premixed flames. Phys. Fluids 10, 22602267.Google Scholar
7. Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782792.CrossRefGoogle Scholar
8. Cantwell, B. J. 1993 On the behaviour of velocity gradient tensor invariants in direct numerical simulations of turbulence. Phys. Fluids A 5, 20082013.CrossRefGoogle Scholar
9. Chacin, J. M., Cantwell, B. J. & Kline, S. J. 1996 Study of turbulent boundary layer structure using the invariants of the velocity gradient tensor. Exp. Therm. Fluid Sci. 13, 308317.CrossRefGoogle Scholar
10. Chen, J. H., Chong, M. S., Soria, J., Sondergaard, R., Perry, A. E., Rogers, M., Moser, R. & Cantwell, B. J. 1990 A study of the topology of dissipating motions in direct numerical simulations of time-developing compressible and incompressible mixing layers. In Proceedings of the Center for Turbulence Research Summer Program, CTR-S90, Stanford University, CA, USA, December 1990.Google Scholar
11. Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97, 174501.CrossRefGoogle ScholarPubMed
12. Chevillard, L. & Meneveau, C. 2007 Intermittency and universality in a Lagrangian model of velocity gradients in three dimensional turbulence. C. R. Mec. 335, 187193.CrossRefGoogle Scholar
13. Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20, 101504.CrossRefGoogle Scholar
14. Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.CrossRefGoogle Scholar
15. Girimaji, S. S. & Pope, S. B. 1990a A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2, 242256.CrossRefGoogle Scholar
16. Girimaji, S. S. & Pope, S. B. 1990b Material element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.Google Scholar
17. Girimaji, S. S. & Speziale, C. G. 1995 A modified restricted Euler equation for turbulent flows with mean velocity gradients. Phys. Fluids 7, 14381446.CrossRefGoogle Scholar
18. Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88.Google Scholar
19. Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16, 421432.CrossRefGoogle Scholar
20. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
21. Lee, K. 2008 Heat release effects on decaying homogenous compressible turbulence. PhD thesis, Texas A&M University.Google Scholar
22. Lee, S., Lele, S. K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657664.Google Scholar
23. Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Lett. 95, 164502.CrossRefGoogle ScholarPubMed
24. Li, Y. & Meneveau, C. 2006 Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport. J. Fluid Mech. 558, 133143.CrossRefGoogle Scholar
25. Martin, J., Ooi, A., Chong, M. S. & Soria, J. 1998 Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10, 23362346.CrossRefGoogle Scholar
26. Martins-Afonso, M. & Meneveau, C. 2010 Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: time scale effects and expansions. Physica D 239, 12411250.Google Scholar
27. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics. MIT Press.Google Scholar
28. Ohkitani, K. 1993 Eigenvalue problems in 3D Euler flows. Phys. Fluids A 5, 25702572.CrossRefGoogle Scholar
29. Ohkitani, K. & Kishiba, S. 1995 Non-local nature of vortex stretching in an inviscid fluid. Phys. Fluids 7, 411421.CrossRefGoogle Scholar
30. O’Neill, P. & Soria, J. 2004 The relationship between the topological structures in turbulent flow and the distribution of a passive scalar with an imposed mean gradient. Fluid Dyn. Res. 36, 107120.Google Scholar
31. Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogenous flows in turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
32. Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6, 21182132.Google Scholar
33. Ristorcelli, J. R. 1997 A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347, 3770.CrossRefGoogle Scholar
34. Ristorcelli, J. R. & Blaisdell, G. A. 1997 Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9 (1), 46.CrossRefGoogle Scholar
35. Sarkar, S. 1992 The pressure–dilatation correlation in compressible turbulence. Phys. Fluids A 12, 26742682.CrossRefGoogle Scholar
36. Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991a Direct simulation of compressible turbulence in shear flow. Theor. Comput. Fluid Dyn. 2, 291305.CrossRefGoogle Scholar
37. Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991b The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
38. Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6, 871884.CrossRefGoogle Scholar
39. Suman, S. & Girimaji, S. S. 2009 Homogenized Euler equation: a model for compressible velocity gradient dynamics. J. Fluid Mech. 620, 177194.CrossRefGoogle Scholar
40. Suman, S. & Girimaji, S. S. 2010 Velocity gradient invariants and local flow field topology in compressible turbulence. J. Turbul. 11, 124.CrossRefGoogle Scholar
41. Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (Paris) 43, 837842.Google Scholar
42. White, F. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
43. Zeman, O. 1990 Dilatation dissipation: the concept and application in modelling compressible mixing. Phys. Fluids 7, 178188.CrossRefGoogle Scholar
44. Zeman, O. 1991 On the decay of compressible isotropic turbulence. Phys. Fluids A 3, 951955.CrossRefGoogle Scholar