Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T21:47:33.605Z Has data issue: false hasContentIssue false

Driven particles at fluid interfaces acting as capillary dipoles

Published online by Cambridge University Press:  30 March 2015

Aaron Dörr*
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
Steffen Hardt
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
*
Email address for correspondence: [email protected]

Abstract

The dynamics of spherical particles driven along an interface between two immiscible fluids is investigated asymptotically. Under the assumptions of a pinned three-phase contact line (TCL) and very different viscosities of the two fluids, a particle assumes a tilted orientation. As it moves, it causes a deformation of the fluid interface which is also computed. The case of two interacting driven particles is studied via the linear superposition approximation. It is shown that the capillary interaction force resulting from the particle motion is dipolar in terms of the azimuthal angle and decays with the fifth power of the inter-particle separation, similar to a capillary quadrupole originating from undulations of the TCL. The dipolar interaction is demonstrated to exceed the quadrupolar interaction at moderate particle velocities.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ally, J. & Amirfazli, A. 2010 Magnetophoretic measurement of the drag force on partially immersed microparticles at air–liquid interfaces. Colloids Surf. A 360, 120128.Google Scholar
Berdan, C. II & Leal, L. G. 1982 Motion of a sphere in the presence of a deformable interface. Part I. Perturbation of the interface from flat: the effects on drag and torque. J. Colloid Interface Sci. 87 (1), 6280.CrossRefGoogle Scholar
Binks, B. P. 2002 Particles as surfactants: similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 2141.Google Scholar
Bławzdziewicz, J., Ekiel-Jeżewska, M. L. & Wajnryb, E. 2010 Motion of a spherical particle near a planar fluid–fluid interface: the effect of surface incompressibility. J. Chem. Phys. 133, 114702.Google Scholar
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19, 519539.Google Scholar
Byerly, W. E. 1893 An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics. Ginn & Company.Google Scholar
Chan, D. Y. C., Henry, J. D. Jr & White, L. R. 1981 The interaction of colloidal particles collected at fluid interfaces. J. Colloid Interface Sci. 79 (2), 410418.Google Scholar
Chen, W. & Tong, P. 2008 Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Eur. Phys. Lett. 84, 28003.CrossRefGoogle Scholar
Cichocki, B., Ekiel-Jeżewska, M. L., Nägele, G. & Wajnryb, E. 2004 Motion of spheres along a fluid–gas interface. J. Chem. Phys. 121, 23052316.CrossRefGoogle ScholarPubMed
Danov, K., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175, 3645.CrossRefGoogle Scholar
Danov, K. D., Gurkov, T. D., Raszillier, H. & Durst, F. 1998 Stokes flow caused by the motion of a rigid sphere close to a viscous interface. Chem. Engng Sci. 53 (19), 34133434.CrossRefGoogle Scholar
Danov, K. D., Kralchevsky, P. A., Naydenov, B. N. & Brenn, G. 2005 Interactions between particles with an undulated contact line at a fluid interface: capillary multipoles of arbitrary order. J. Colloid Interface Sci. 287, 121134.Google Scholar
Dassios, G. & Vafeas, P. 2001 Connection formulae for differential representations in Stokes flow. J. Comput. Appl. Maths 133, 283294.CrossRefGoogle Scholar
Domínguez, A., Oettel, M. & Dietrich, S. 2008 Force balance of particles trapped at fluid interfaces. J. Chem. Phys. 128, 114904.Google Scholar
Du, K., Liddle, J. A. & Berglund, A. J. 2012 Three-dimensional real-time tracking of nanoparticles at an oil–water interface. Langmuir 28, 91819188.CrossRefGoogle ScholarPubMed
Fischer, T. M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.Google Scholar
Fortes, M. A. 1982 Attraction and repulsion of floating particles. Can. J. Chem. 60, 28892895.Google Scholar
Fulford, G. R. & Blake, J. R. 1986 Force distribution along a slender body straddling an interface. J. Austral. Math. Soc. B 27, 295315.Google Scholar
Ghezzi, F., Earnshaw, J. C., Finnis, M. & McCluney, M. 2001 Pattern formation in colloidal monolayers at the air–water interface. J. Colloid Interface Sci. 238, 433446.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.CrossRefGoogle Scholar
Horozov, T. S., Aveyard, R. & Clint, J. H. 2005 Particle zips: vertical emulsion films with particle monolayers at their surfaces. Langmuir 21, 23302341.CrossRefGoogle ScholarPubMed
Huh, C. & Mason, S. G. 1974 The flotation of axisymmetric particles at horizontal liquid interfaces. J. Colloid Interface Sci. 47 (2), 271289.Google Scholar
Israelachvili, J. N. 2011 Intermolecular and Surface Forces, 3rd edn. Academic.Google Scholar
Koser, A. E., Keim, N. C. & Arratia, P. E. 2013 Structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields. Phys. Rev. E 88, 062304.Google Scholar
Kralchevsky, P. A. & Nagayama, K. 2000 Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145192.CrossRefGoogle ScholarPubMed
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Lee, S. H., Chadwick, R. S. & Leal, L. G. 1979 Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech. 93 (4), 705726.Google Scholar
Moisy, F. & Rabaud, M. 2014 Mach-like capillary–gravity wakes. Phys. Rev. E 90, 023009.Google Scholar
Nicolson, M. M. 1949 The interaction between floating particles. Math. Proc. Camb. Phil. Soc. 45 (2), 288295.CrossRefGoogle Scholar
Oettel, M. & Dietrich, S. 2008 Colloidal interactions at fluid interfaces. Langmuir 24, 14251441.Google Scholar
Oettel, M., Domínguez, A. & Dietrich, S. 2005 Effective capillary interaction of spherical particles at fluid interfaces. Phys. Rev. E 71, 051401.Google Scholar
O’Neill, M. E., Ranger, K. B. & Brenner, H. 1986 Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the contact-line singularity. Phys. Fluids 29, 913924.Google Scholar
Park, B. J. & Furst, E. M. 2011 Attractive interactions between colloids at the oil–water interface. Soft Matt. 7, 76767682.CrossRefGoogle Scholar
Petkov, J. T., Denkov, N. D., Danov, K. D., Velev, O. D., Aust, R. & Durst, F. 1995 Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J. Colloid Interface Sci. 172, 147154.Google Scholar
Pitois, O. & Chateau, X. 2002 Small particle at a fluid interface: effect of contact angle hysteresis on force and work of detachment. Langmuir 18, 97519756.Google Scholar
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.Google Scholar
Radoev, B., Nedjalkov, M. & Djakovich, V. 1992 Brownian motion at liquid–gas interfaces. Part 1. Diffusion coefficients of macroparticles at pure interfaces. Langmuir 8, 29622965.Google Scholar
Rawson, K. J. 2001 Basic Ship Theory, vol. 1. Butterworth-Heinemann.Google Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.Google Scholar
Singh, P. & Hesla, T. I. 2004 The interfacial torque on a partially submerged sphere. J. Colloid Interface Sci. 280, 542543.Google Scholar
Singh, P. & Joseph, D. D. 2005 Fluid dynamics of floating particles. J. Fluid Mech. 530, 3180.CrossRefGoogle Scholar
Singh, P., Joseph, D. D., Fischer, I. S. & Dalal, B. 2011 Role of particle inertia in adsorption at fluid–liquid interfaces. Phys. Rev. E 83, 041606.Google Scholar
Sriram, I., Walder, R. & Schwartz, D. K. 2012 Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface. Soft Matt. 8, 60006003.CrossRefGoogle Scholar
Stamou, D., Duschl, C. & Johannsmann, D. 2000 Long-range attraction between colloidal spheres at the air–water interface: the consequence of an irregular meniscus. Phys. Rev. E 62 (4), 52635271.Google Scholar
Vassileva, N. D., van den Ende, D., Mugele, F. & Mellema, J. 2005 Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21, 1119011200.CrossRefGoogle Scholar
Würger, A. 2014 Thermally driven Marangoni surfers. J. Fluid Mech. 752, 589601.Google Scholar
Zabarankin, M. 2007 Asymmetric three-dimensional Stokes flow about two fused equal spheres. Proc. R. Soc. Lond. A 463, 23292349.Google Scholar